modeling_utils.py 46.3 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from functools import partial
22
from typing import Any, Callable, List, Optional, Tuple, Union
23

24
import safetensors
25
import torch
26
from huggingface_hub import create_repo
27
from torch import Tensor, device, nn
28

29
30
from .. import __version__
from ..utils import (
31
32
    CONFIG_NAME,
    DIFFUSERS_CACHE,
33
    FLAX_WEIGHTS_NAME,
34
    HF_HUB_OFFLINE,
35
    SAFETENSORS_WEIGHTS_NAME,
36
    WEIGHTS_NAME,
37
38
    _add_variant,
    _get_model_file,
39
    deprecate,
40
41
42
43
    is_accelerate_available,
    is_torch_version,
    logging,
)
44
from ..utils.hub_utils import PushToHubMixin
45
46
47
48
49


logger = logging.get_logger(__name__)


50
51
52
53
54
55
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


56
57
58
59
60
61
if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version


62
63
def get_parameter_device(parameter: torch.nn.Module):
    try:
Patrick von Platen's avatar
Patrick von Platen committed
64
65
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: torch.nn.Module):
    try:
80
81
82
83
84
85
86
87
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

88
89
90
91
92
93
94
95
96
97
98
99
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


100
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
101
    """
102
    Reads a checkpoint file, returning properly formatted errors if they arise.
103
104
    """
    try:
105
        if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant):
106
107
108
            return torch.load(checkpoint_file, map_location="cpu")
        else:
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
125
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' "
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


def _load_state_dict_into_model(model_to_load, state_dict):
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
    def load(module: torch.nn.Module, prefix=""):
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


152
class ModelMixin(torch.nn.Module, PushToHubMixin):
153
154
155
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
156
157
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
158

Steven Liu's avatar
Steven Liu committed
159
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
160
    """
161
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
162
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
163
    _supports_gradient_checkpointing = False
164
    _keys_to_ignore_on_load_unexpected = None
165

166
    def __init__(self):
167
168
        super().__init__()

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

187
188
189
190
191
192
193
194
195
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

    def enable_gradient_checkpointing(self):
        """
Steven Liu's avatar
Steven Liu committed
196
197
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
198
199
200
201
202
203
204
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

    def disable_gradient_checkpointing(self):
        """
Steven Liu's avatar
Steven Liu committed
205
206
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
207
208
209
210
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

211
212
213
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
214
215
216
217
218
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
219
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
220
221
222
223
224
225
226
227

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

228
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
229
        r"""
Steven Liu's avatar
Steven Liu committed
230
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
231

Steven Liu's avatar
Steven Liu committed
232
233
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
234

Steven Liu's avatar
Steven Liu committed
235
236
237
238
239
240
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
261
        """
262
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
263
264
265

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
266
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
267
268
269
        """
        self.set_use_memory_efficient_attention_xformers(False)

270
271
272
273
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
274
        save_function: Callable = None,
275
        safe_serialization: bool = True,
276
        variant: Optional[str] = None,
277
278
        push_to_hub: bool = False,
        **kwargs,
279
280
    ):
        """
Steven Liu's avatar
Steven Liu committed
281
282
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
283
284
285

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
286
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
287
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
288
289
290
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
291
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
292
293
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
294
                `DIFFUSERS_SAVE_MODE`.
295
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
296
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
297
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
298
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
299
300
301
302
303
304
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
305
306
307
308
309
310
311
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

312
313
314
315
316
317
318
319
320
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
321
322
323
324
325
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
326
            model_to_save.save_config(save_directory)
327
328
329
330

        # Save the model
        state_dict = model_to_save.state_dict()

331
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
332
        weights_name = _add_variant(weights_name, variant)
333

334
        # Save the model
335
336
337
338
339
340
        if safe_serialization:
            safetensors.torch.save_file(
                state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
            )
        else:
            torch.save(state_dict, os.path.join(save_directory, weights_name))
341

342
        logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
343

344
345
346
347
348
349
350
351
352
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

353
    @classmethod
354
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
355
        r"""
Steven Liu's avatar
Steven Liu committed
356
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
357

Steven Liu's avatar
Steven Liu committed
358
359
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
360
361
362
363
364

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
365
366
367
368
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
369
370

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
371
372
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
373
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
374
375
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
376
377
378
379
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
380
381
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
382
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
383
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
384
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
385
            output_loading_info (`bool`, *optional*, defaults to `False`):
386
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
387
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
388
389
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
390
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
391
392
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
393
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
394
395
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
396
397
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
398
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
399
                The subfolder location of a model file within a larger model repository on the Hub or locally.
400
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
401
402
403
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
404
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
405
406
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
407
408
                same device.

Steven Liu's avatar
Steven Liu committed
409
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
410
411
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
412
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
413
414
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
415
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
416
                The path to offload weights if `device_map` contains the value `"disk"`.
417
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
418
419
420
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
421
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
422
423
424
425
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
426
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
427
428
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
429
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
430
431
432
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
433
434
435

        <Tip>

Steven Liu's avatar
Steven Liu committed
436
437
438
439
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
440
441
442

        </Tip>

Steven Liu's avatar
Steven Liu committed
443
        Example:
444

Steven Liu's avatar
Steven Liu committed
445
446
        ```py
        from diffusers import UNet2DConditionModel
447

Steven Liu's avatar
Steven Liu committed
448
449
450
451
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
452

Steven Liu's avatar
Steven Liu committed
453
454
455
456
457
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
458
        """
459
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
460
461
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
462
        from_flax = kwargs.pop("from_flax", False)
463
464
465
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
466
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
467
468
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
469
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
470
        subfolder = kwargs.pop("subfolder", None)
471
        device_map = kwargs.pop("device_map", None)
472
473
474
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
475
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
476
        variant = kwargs.pop("variant", None)
477
478
479
480
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
481
            use_safetensors = True
482
            allow_pickle = True
483

484
485
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
486
            logger.warning(
487
488
489
490
491
492
493
494
495
496
497
498
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

499
500
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
501
502
503
504
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
505

506
507
508
509
510
511
512
513
514
515
516
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
517

518
519
520
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

521
522
523
524
525
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            use_auth_token=use_auth_token,
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
541
542
543
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
544
545
546
547
548
            user_agent=user_agent,
            **kwargs,
        )

        # load model
549
        model_file = None
550
        if from_flax:
551
            model_file = _get_model_file(
552
                pretrained_model_name_or_path,
553
                weights_name=FLAX_WEIGHTS_NAME,
554
555
556
557
558
559
560
561
562
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
563
                commit_hash=commit_hash,
564
565
            )
            model = cls.from_config(config, **unused_kwargs)
566

567
568
569
570
571
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
572
            if use_safetensors:
573
                try:
574
                    model_file = _get_model_file(
575
                        pretrained_model_name_or_path,
576
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
577
578
579
580
581
582
583
584
585
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
586
                        commit_hash=commit_hash,
587
                    )
588
589
590
                except IOError as e:
                    if not allow_pickle:
                        raise e
591
592
                    pass
            if model_file is None:
593
                model_file = _get_model_file(
594
                    pretrained_model_name_or_path,
595
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
596
597
598
599
600
601
602
603
604
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
605
                    commit_hash=commit_hash,
606
607
608
609
610
611
612
613
614
615
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
616
                    state_dict = load_state_dict(model_file, variant=variant)
617
                    model._convert_deprecated_attention_blocks(state_dict)
618
                    # move the params from meta device to cpu
619
620
621
622
623
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
624
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
625
626
                            " those weights or else make sure your checkpoint file is correct."
                        )
627
                    unexpected_keys = []
628

629
                    empty_state_dict = model.state_dict()
630
631
632
633
                    for param_name, param in state_dict.items():
                        accepts_dtype = "dtype" in set(
                            inspect.signature(set_module_tensor_to_device).parameters.keys()
                        )
634

635
636
637
638
                        if param_name not in empty_state_dict:
                            unexpected_keys.append(param_name)
                            continue

639
640
641
642
643
                        if empty_state_dict[param_name].shape != param.shape:
                            raise ValueError(
                                f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
                            )

644
645
646
647
648
649
                        if accepts_dtype:
                            set_module_tensor_to_device(
                                model, param_name, param_device, value=param, dtype=torch_dtype
                            )
                        else:
                            set_module_tensor_to_device(model, param_name, param_device, value=param)
650
651
652
653
654
655
656
657
658
659

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        logger.warn(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

660
661
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
662
                    # by default the device_map is None and the weights are loaded on the CPU
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
                            logger.warn(
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
704
705
706
707
708
709
710
711

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
712
                model = cls.from_config(config, **unused_kwargs)
713

714
                state_dict = load_state_dict(model_file, variant=variant)
715
                model._convert_deprecated_attention_blocks(state_dict)
716

717
718
719
720
721
722
723
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
724

725
726
727
728
729
730
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
731
732
733
734
735
736
737
738
739
740
741
742
743

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
759
        loaded_keys = list(state_dict.keys())
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

    @property
    def device(self) -> device:
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
869
        Get number of (trainable or non-embedding) parameters in the module.
870
871
872

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
873
                Whether or not to return only the number of trainable parameters.
874
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
875
                Whether or not to return only the number of non-embedding parameters.
876
877
878

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
879
880
881
882
883
884
885
886
887
888
889

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
890
891
892
893
894
895
896
897
898
899
900
901
902
903
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

    def _convert_deprecated_attention_blocks(self, state_dict):
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

    def _temp_convert_self_to_deprecated_attention_blocks(self):
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

    def _undo_temp_convert_self_to_deprecated_attention_blocks(self):
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn