"vscode:/vscode.git/clone" did not exist on "cca59ce3a289d8837d81747389f997d6a1564d1d"
unet_2d_condition.py 62.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
Patrick von Platen's avatar
Patrick von Platen committed
23
from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
24
from .activations import get_activation
25
26
27
from .attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
28
    Attention,
29
30
31
32
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
YiYi Xu's avatar
YiYi Xu committed
33
34
from .embeddings import (
    GaussianFourierProjection,
35
    GLIGENTextBoundingboxProjection,
YiYi Xu's avatar
YiYi Xu committed
36
37
38
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
YiYi Xu's avatar
YiYi Xu committed
39
40
41
42
43
44
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
45
from .modeling_utils import ModelMixin
46
from .unet_2d_blocks import (
47
    UNetMidBlock2D,
48
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
49
    UNetMidBlock2DSimpleCrossAttn,
50
51
52
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
53
54


55
56
57
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


58
59
60
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
61
62
    The output of [`UNet2DConditionModel`].

63
64
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
65
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
66
67
    """

68
    sample: torch.FloatTensor = None
69
70


71
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
Kashif Rasul's avatar
Kashif Rasul committed
72
    r"""
Steven Liu's avatar
Steven Liu committed
73
74
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
Kashif Rasul's avatar
Kashif Rasul committed
75

Steven Liu's avatar
Steven Liu committed
76
77
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
Kashif Rasul's avatar
Kashif Rasul committed
78
79

    Parameters:
80
81
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Steven Liu's avatar
Steven Liu committed
82
83
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
84
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
85
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
86
87
88
89
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
90
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
91
            Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
Steven Liu's avatar
Steven Liu committed
92
93
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
Kashif Rasul's avatar
Kashif Rasul committed
94
            The tuple of upsample blocks to use.
95
96
97
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
98
99
100
101
102
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
103
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Kashif Rasul's avatar
Kashif Rasul committed
104
105
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
106
            If `None`, normalization and activation layers is skipped in post-processing.
Kashif Rasul's avatar
Kashif Rasul committed
107
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
108
109
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
110
        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
111
112
113
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
114
115
116
117
118
       reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
            blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
119
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
120
121
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
Steven Liu's avatar
Steven Liu committed
122
123
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
YiYi Xu's avatar
YiYi Xu committed
124
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
Kashif Rasul's avatar
Kashif Rasul committed
125
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
126
127
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
128
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
Steven Liu's avatar
Steven Liu committed
129
130
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
131
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
132
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Steven Liu's avatar
Steven Liu committed
133
        addition_embed_type (`str`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
134
135
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
136
137
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
Steven Liu's avatar
Steven Liu committed
138
        num_class_embeds (`int`, *optional*, defaults to `None`):
139
140
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
Steven Liu's avatar
Steven Liu committed
141
        time_embedding_type (`str`, *optional*, defaults to `positional`):
142
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Steven Liu's avatar
Steven Liu committed
143
        time_embedding_dim (`int`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
144
            An optional override for the dimension of the projected time embedding.
Steven Liu's avatar
Steven Liu committed
145
146
147
148
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
149
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
Steven Liu's avatar
Steven Liu committed
150
151
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
152
153
154
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
        *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
        *optional*): The dimension of the `class_labels` input when
Steven Liu's avatar
Steven Liu committed
155
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
156
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
157
158
159
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
Steven Liu's avatar
Steven Liu committed
160
161
162
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
Kashif Rasul's avatar
Kashif Rasul committed
163
164
    """

165
166
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
170
171
172
173
174
175
176
177
178
179
180
181
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
182
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
183
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
184
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
185
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
186
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
187
188
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
189
        dropout: float = 0.0,
Sid Sahai's avatar
Sid Sahai committed
190
        act_fn: str = "silu",
191
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
192
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
193
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
194
195
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
William Berman's avatar
William Berman committed
196
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
197
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
198
        attention_head_dim: Union[int, Tuple[int]] = 8,
199
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
200
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
201
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
202
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
203
        addition_embed_type: Optional[str] = None,
204
        addition_time_embed_dim: Optional[int] = None,
205
        num_class_embeds: Optional[int] = None,
206
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
207
        resnet_time_scale_shift: str = "default",
208
209
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
210
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
211
        time_embedding_dim: Optional[int] = None,
212
        time_embedding_act_fn: Optional[str] = None,
213
214
215
216
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
217
        projection_class_embeddings_input_dim: Optional[int] = None,
218
        attention_type: str = "default",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
219
        class_embeddings_concat: bool = False,
220
        mid_block_only_cross_attention: Optional[bool] = None,
221
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
222
        addition_embed_type_num_heads=64,
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
226
227
    ):
        super().__init__()

        self.sample_size = sample_size

228
229
230
231
232
        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

233
234
235
236
237
238
239
240
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

257
258
259
260
261
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
262
263
264
265
266
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
267
268
269
270
271
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

272
273
274
275
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )
276
277
278
279
        if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
            for layer_number_per_block in transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
280

Patrick von Platen's avatar
Patrick von Platen committed
281
        # input
282
283
284
285
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
286
287

        # time
288
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
289
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
290
291
292
293
294
295
296
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
297
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
298
299
300
301
302

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
303
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
304
            )
Patrick von Platen's avatar
Patrick von Platen committed
305

306
307
308
309
310
311
312
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
313

YiYi Xu's avatar
YiYi Xu committed
314
315
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
316
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
317
318
319
320
321
322
323
324
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
325
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
326
327
328
329
330
331
332
333
334
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
335
336
337
338
339
340
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
341
342
343
344
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
345
346
347
        else:
            self.encoder_hid_proj = None

348
        # class embedding
Will Berman's avatar
Will Berman committed
349
        if class_embed_type is None and num_class_embeds is not None:
350
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
351
        elif class_embed_type == "timestep":
352
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
353
354
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
355
356
357
358
359
360
361
362
363
364
365
366
367
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
368
369
370
371
372
373
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
374
375
        else:
            self.class_embedding = None
376

Patrick von Platen's avatar
Patrick von Platen committed
377
378
379
380
381
382
383
384
385
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
386
387
388
389
390
391
392
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
393
394
395
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
YiYi Xu's avatar
YiYi Xu committed
396
397
398
399
400
401
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
Patrick von Platen's avatar
Patrick von Platen committed
402
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
403
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
404

405
406
407
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
408
            self.time_embed_act = get_activation(time_embedding_act_fn)
409

Patrick von Platen's avatar
Patrick von Platen committed
410
411
412
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

413
        if isinstance(only_cross_attention, bool):
414
415
416
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

417
418
            only_cross_attention = [only_cross_attention] * len(down_block_types)

419
420
421
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

422
423
424
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
425
426
427
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
428
429
430
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

431
432
433
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

434
435
436
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
437
438
439
440
441
442
443
444
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
445
446
447
448
449
450
451
452
453
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
454
                num_layers=layers_per_block[i],
455
                transformer_layers_per_block=transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
456
457
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
458
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
459
460
461
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
462
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
463
                cross_attention_dim=cross_attention_dim[i],
464
                num_attention_heads=num_attention_heads[i],
Patrick von Platen's avatar
Patrick von Platen committed
465
                downsample_padding=downsample_padding,
466
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
467
                use_linear_projection=use_linear_projection,
468
                only_cross_attention=only_cross_attention[i],
469
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
470
                resnet_time_scale_shift=resnet_time_scale_shift,
471
                attention_type=attention_type,
472
473
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
474
                cross_attention_norm=cross_attention_norm,
475
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
476
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
480
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
481
482
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
483
                transformer_layers_per_block=transformer_layers_per_block[-1],
Will Berman's avatar
Will Berman committed
484
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
485
                temb_channels=blocks_time_embed_dim,
486
                dropout=dropout,
Will Berman's avatar
Will Berman committed
487
488
489
490
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
491
                cross_attention_dim=cross_attention_dim[-1],
492
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
493
494
495
496
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
497
                attention_type=attention_type,
Will Berman's avatar
Will Berman committed
498
499
500
501
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
502
                temb_channels=blocks_time_embed_dim,
503
                dropout=dropout,
Will Berman's avatar
Will Berman committed
504
505
506
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
507
                cross_attention_dim=cross_attention_dim[-1],
508
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
509
510
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
511
                skip_time_act=resnet_skip_time_act,
512
                only_cross_attention=mid_block_only_cross_attention,
513
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
514
            )
515
516
517
518
519
520
521
522
523
524
525
526
527
        elif mid_block_type == "UNetMidBlock2D":
            self.mid_block = UNetMidBlock2D(
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                dropout=dropout,
                num_layers=0,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
                add_attention=False,
            )
528
529
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
530
531
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
532

533
534
535
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
536
537
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
538
        reversed_num_attention_heads = list(reversed(num_attention_heads))
539
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
540
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
541
542
543
544
545
        reversed_transformer_layers_per_block = (
            list(reversed(transformer_layers_per_block))
            if reverse_transformer_layers_per_block is None
            else reverse_transformer_layers_per_block
        )
546
        only_cross_attention = list(reversed(only_cross_attention))
547

Patrick von Platen's avatar
Patrick von Platen committed
548
549
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
550
551
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
552
553
554
555
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

556
557
558
559
560
561
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
562
563
564

            up_block = get_up_block(
                up_block_type,
565
                num_layers=reversed_layers_per_block[i] + 1,
566
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
567
568
569
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
570
                temb_channels=blocks_time_embed_dim,
571
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
572
573
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
574
                resolution_idx=i,
575
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
576
                cross_attention_dim=reversed_cross_attention_dim[i],
577
                num_attention_heads=reversed_num_attention_heads[i],
578
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
579
                use_linear_projection=use_linear_projection,
580
                only_cross_attention=only_cross_attention[i],
581
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
582
                resnet_time_scale_shift=resnet_time_scale_shift,
583
                attention_type=attention_type,
584
585
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
586
                cross_attention_norm=cross_attention_norm,
587
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
588
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591
592
593
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
594
595
596
597
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
598

599
            self.conv_act = get_activation(act_fn)
600

601
602
603
604
605
606
607
608
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
609

610
        if attention_type in ["gated", "gated-text-image"]:
611
612
613
614
615
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]
616
617

            feature_type = "text-only" if attention_type == "gated" else "text-image"
618
            self.position_net = GLIGENTextBoundingboxProjection(
619
620
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )
621

622
    @property
Patrick von Platen's avatar
Patrick von Platen committed
623
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
624
625
626
627
628
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
629
        # set recursively
630
631
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
632
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
633
634
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
635
636
637
638
639
640
641
642
643
644
645

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

646
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
647
        r"""
Steven Liu's avatar
Steven Liu committed
648
649
        Sets the attention processor to use to compute attention.

650
        Parameters:
Steven Liu's avatar
Steven Liu committed
651
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
652
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
653
654
655
656
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
657
658
659
660
661
662
663
664
665
666
667

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
668
            if hasattr(module, "set_processor"):
669
                if not isinstance(processor, dict):
670
                    module.set_processor(processor)
671
                else:
672
                    module.set_processor(processor.pop(f"{name}.processor"))
673

674
675
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
676

677
678
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
679

680
681
682
683
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
684
685
686
687
688
689
690
691
692
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

693
        self.set_attn_processor(processor)
694

695
    def set_attention_slice(self, slice_size):
696
697
        r"""
        Enable sliced attention computation.
698

Steven Liu's avatar
Steven Liu committed
699
700
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
701

702
703
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
704
705
706
707
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
708
709
710
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
711
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
712
713
714
715
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
716
                fn_recursive_retrieve_sliceable_dims(child)
717
718
719

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
720
            fn_recursive_retrieve_sliceable_dims(module)
721

Alexander Pivovarov's avatar
Alexander Pivovarov committed
722
        num_sliceable_layers = len(sliceable_head_dims)
723
724
725
726
727
728
729

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
730
            slice_size = num_sliceable_layers * [1]
731

Alexander Pivovarov's avatar
Alexander Pivovarov committed
732
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
733
734
735
736
737
738

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
739

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
759

760
    def _set_gradient_checkpointing(self, module, value=False):
761
        if hasattr(module, "gradient_checkpointing"):
762
763
            module.gradient_checkpointing = value

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    def enable_freeu(self, s1, s2, b1, b2):
        r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
793
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
794
795
                    setattr(upsample_block, k, None)

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

832
833
834
835
836
837
838
839
840
841
842
    def unload_lora(self):
        """Unloads LoRA weights."""
        deprecate(
            "unload_lora",
            "0.28.0",
            "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
        )
        for module in self.modules():
            if hasattr(module, "set_lora_layer"):
                module.set_lora_layer(None)

Patrick von Platen's avatar
Patrick von Platen committed
843
844
845
846
847
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
848
        class_labels: Optional[torch.Tensor] = None,
849
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
850
        attention_mask: Optional[torch.Tensor] = None,
851
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
852
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
853
854
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
855
        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
856
        encoder_attention_mask: Optional[torch.Tensor] = None,
857
858
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
859
        r"""
Steven Liu's avatar
Steven Liu committed
860
861
        The [`UNet2DConditionModel`] forward method.

Kashif Rasul's avatar
Kashif Rasul committed
862
        Args:
Steven Liu's avatar
Steven Liu committed
863
864
865
866
867
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
888
            encoder_attention_mask (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
889
890
891
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
Kashif Rasul's avatar
Kashif Rasul committed
892
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
893
894
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
895
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
896
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
897
898
899
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
900
            down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
901
902
                additional residuals to be added to UNet long skip connections from down blocks to up blocks for
                example from ControlNet side model(s)
903
904
905
906
            mid_block_additional_residual (`torch.Tensor`, *optional*):
                additional residual to be added to UNet mid block output, for example from ControlNet side model
            down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
Kashif Rasul's avatar
Kashif Rasul committed
907
908
909

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
910
911
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
Kashif Rasul's avatar
Kashif Rasul committed
912
        """
913
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
914
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
915
916
917
918
919
920
921
922
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

923
924
925
926
927
        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break
928

929
930
931
932
933
934
935
936
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
937
        if attention_mask is not None:
938
939
940
941
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
942
943
944
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

945
946
947
948
949
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
950
951
952
953
954
955
956
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
957
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
958
959
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
960
            if isinstance(timestep, float):
961
962
963
964
965
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
966
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
967

968
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
969
        timesteps = timesteps.expand(sample.shape[0])
970

Patrick von Platen's avatar
Patrick von Platen committed
971
        t_emb = self.time_proj(timesteps)
972

973
        # `Timesteps` does not contain any weights and will always return f32 tensors
974
975
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
976
        t_emb = t_emb.to(dtype=sample.dtype)
977
978

        emb = self.time_embedding(t_emb, timestep_cond)
979
        aug_emb = None
Patrick von Platen's avatar
Patrick von Platen committed
980

Will Berman's avatar
Will Berman committed
981
        if self.class_embedding is not None:
982
983
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
984
985
986
987

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

988
989
990
991
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

992
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
993
994
995
996
997

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
998

Patrick von Platen's avatar
Patrick von Platen committed
999
1000
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1001
        elif self.config.addition_embed_type == "text_image":
YiYi Xu's avatar
YiYi Xu committed
1002
            # Kandinsky 2.1 - style
YiYi Xu's avatar
YiYi Xu committed
1003
1004
1005
1006
1007
1008
1009
1010
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
1011
        elif self.config.addition_embed_type == "text_time":
1012
            # SDXL - style
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
YiYi Xu's avatar
YiYi Xu committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)
1046
1047

        emb = emb + aug_emb if aug_emb is not None else emb
Patrick von Platen's avatar
Patrick von Platen committed
1048

1049
1050
1051
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
1052
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
1053
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
YiYi Xu's avatar
YiYi Xu committed
1063
1064
1065
1066
1067
1068
1069
1070
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1071
1072
1073
1074
1075
1076
1077
1078
1079
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
            encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
1080
1081
1082
        # 2. pre-process
        sample = self.conv_in(sample)

1083
1084
1085
1086
1087
1088
        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

Patrick von Platen's avatar
Patrick von Platen committed
1089
        # 3. down
1090
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1091
1092
1093
        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
Will Berman's avatar
Will Berman committed
1094
1095

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1096
1097
1098
1099
1100
1101
        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
Patrick von Platen's avatar
Patrick von Platen committed
1102
1103
1104
1105
            deprecate(
                "T2I should not use down_block_additional_residuals",
                "1.3.0",
                "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1106
1107
                       and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
                       for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
Patrick von Platen's avatar
Patrick von Platen committed
1108
1109
                standard_warn=False,
            )
1110
1111
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True
Will Berman's avatar
Will Berman committed
1112

Patrick von Platen's avatar
Patrick von Platen committed
1113
1114
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
1115
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Will Berman's avatar
Will Berman committed
1116
1117
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
1118
1119
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
Will Berman's avatar
Will Berman committed
1120

Patrick von Platen's avatar
Patrick von Platen committed
1121
                sample, res_samples = downsample_block(
1122
1123
1124
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1125
                    attention_mask=attention_mask,
1126
                    cross_attention_kwargs=cross_attention_kwargs,
1127
                    encoder_attention_mask=encoder_attention_mask,
Will Berman's avatar
Will Berman committed
1128
                    **additional_residuals,
Patrick von Platen's avatar
Patrick von Platen committed
1129
1130
                )
            else:
1131
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1132
1133
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    sample += down_intrablock_additional_residuals.pop(0)
Will Berman's avatar
Will Berman committed
1134

Patrick von Platen's avatar
Patrick von Platen committed
1135
1136
            down_block_res_samples += res_samples

Will Berman's avatar
Will Berman committed
1137
        if is_controlnet:
1138
1139
1140
1141
1142
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
1143
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
1144
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1145
1146
1147

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
1148
        # 4. mid
1149
        if self.mid_block is not None:
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
            if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = self.mid_block(sample, emb)

1162
1163
1164
            # To support T2I-Adapter-XL
            if (
                is_adapter
1165
1166
                and len(down_intrablock_additional_residuals) > 0
                and sample.shape == down_intrablock_additional_residuals[0].shape
1167
            ):
1168
                sample += down_intrablock_additional_residuals.pop(0)
Patrick von Platen's avatar
Patrick von Platen committed
1169

Will Berman's avatar
Will Berman committed
1170
        if is_controlnet:
1171
            sample = sample + mid_block_additional_residual
1172

Patrick von Platen's avatar
Patrick von Platen committed
1173
        # 5. up
1174
1175
1176
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
1177
1178
1179
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

1180
1181
1182
1183
1184
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

1185
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
1186
1187
1188
1189
1190
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
1191
                    cross_attention_kwargs=cross_attention_kwargs,
1192
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
1193
                    attention_mask=attention_mask,
1194
                    encoder_attention_mask=encoder_attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
1195
1196
                )
            else:
1197
                sample = upsample_block(
1198
1199
1200
1201
1202
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    scale=lora_scale,
1203
                )
1204

Patrick von Platen's avatar
Patrick von Platen committed
1205
        # 6. post-process
1206
1207
1208
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
1209
1210
        sample = self.conv_out(sample)

1211
1212
        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
1213
            unscale_lora_layers(self, lora_scale)
1214

1215
1216
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
1217

1218
        return UNet2DConditionOutput(sample=sample)