unet_2d_condition.py 32.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
23
from ..utils import BaseOutput, logging
24
from .attention_processor import AttentionProcessor, AttnProcessor
25
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
26
from .modeling_utils import ModelMixin
27
from .unet_2d_blocks import (
28
29
30
31
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
32
    UNetMidBlock2DSimpleCrossAttn,
33
34
35
36
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
38


39
40
41
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


42
43
44
45
46
47
48
49
50
51
52
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


53
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
54
55
56
57
58
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
59
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
60
61

    Parameters:
62
63
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
64
65
66
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
67
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
68
69
70
71
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
72
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
73
74
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
75
76
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
77
78
79
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
80
81
82
83
84
85
86
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
87
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
88
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
89
90
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
Kashif Rasul's avatar
Kashif Rasul committed
91
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
92
93
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
94
95
        class_embed_type (`str`, *optional*, defaults to None):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
96
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
97
98
99
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
100
101
102
103
104
105
106
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
107
108
109
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
110
111
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
        embeddings with the class embeddings.
Kashif Rasul's avatar
Kashif Rasul committed
112
113
    """

114
115
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
119
120
121
122
123
124
125
126
127
128
129
130
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
131
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
132
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
133
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
134
135
136
137
138
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
139
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
140
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
141
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
Suraj Patil's avatar
Suraj Patil committed
142
        attention_head_dim: Union[int, Tuple[int]] = 8,
143
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
144
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
145
        class_embed_type: Optional[str] = None,
146
        num_class_embeds: Optional[int] = None,
147
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
148
        resnet_time_scale_shift: str = "default",
149
150
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
151
        time_embedding_type: str = "positional",
152
153
154
155
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
156
        projection_class_embeddings_input_dim: Optional[int] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
157
        class_embeddings_concat: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
162
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
184
185
186
187
188
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
189
        # input
190
191
192
193
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
194
195

        # time
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        if time_embedding_type == "fourier":
            time_embed_dim = block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
211
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
212
            )
Patrick von Platen's avatar
Patrick von Platen committed
213

214
215
216
217
218
219
220
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
221

222
        # class embedding
Will Berman's avatar
Will Berman committed
223
        if class_embed_type is None and num_class_embeds is not None:
224
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
225
226
227
228
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
229
230
231
232
233
234
235
236
237
238
239
240
241
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
242
243
244
245
246
247
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
248
249
        else:
            self.class_embedding = None
250

Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

254
255
256
        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
257
258
259
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
260
261
262
263
264
265
266
267
268
269
270
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
271
272
273
274
275
276
277
278
279
280
281
282
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
283
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
284
285
286
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
287
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
288
                cross_attention_dim=cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
289
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
290
                downsample_padding=downsample_padding,
291
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
292
                use_linear_projection=use_linear_projection,
293
                only_cross_attention=only_cross_attention[i],
294
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
295
                resnet_time_scale_shift=resnet_time_scale_shift,
296
297
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
301
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
302
303
304
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
305
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
306
307
308
309
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
310
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
311
312
313
314
315
316
317
318
319
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
320
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
321
322
323
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
324
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
325
326
327
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
328
                skip_time_act=resnet_skip_time_act,
Will Berman's avatar
Will Berman committed
329
            )
330
331
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
332
333
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
334

335
336
337
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
338
339
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
340
        reversed_attention_head_dim = list(reversed(attention_head_dim))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
341
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
342
        only_cross_attention = list(reversed(only_cross_attention))
343

Patrick von Platen's avatar
Patrick von Platen committed
344
345
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
346
347
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
348
349
350
351
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

352
353
354
355
356
357
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
361
362
363
364

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
365
                temb_channels=blocks_time_embed_dim,
366
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
367
368
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
369
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
370
                cross_attention_dim=reversed_cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
371
                attn_num_head_channels=reversed_attention_head_dim[i],
372
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
373
                use_linear_projection=use_linear_projection,
374
                only_cross_attention=only_cross_attention[i],
375
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
376
                resnet_time_scale_shift=resnet_time_scale_shift,
377
378
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
379
380
381
382
383
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
384
385
386
387
388
389
390
391
392
393
394
395
396
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
397

398
    @property
Patrick von Platen's avatar
Patrick von Platen committed
399
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
400
401
402
403
404
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
405
        # set recursively
406
407
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
408
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
409
410
411
412
413
414
415
416
417
418
419
420
421
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
422
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
423
424
        r"""
        Parameters:
Patrick von Platen's avatar
Patrick von Platen committed
425
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
426
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Patrick von Platen's avatar
Patrick von Platen committed
427
                of **all** `Attention` layers.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
428
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
429
430
431
432
433
434
435
436
437
438
439

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
440
            if hasattr(module, "set_processor"):
441
442
443
444
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
445

446
447
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
448

449
450
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
451

452
453
454
455
456
457
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

458
    def set_attention_slice(self, slice_size):
459
460
        r"""
        Enable sliced attention computation.
461

462
463
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
464

465
466
467
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
468
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
469
470
471
472
473
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
474
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
475
476
477
478
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
479
                fn_recursive_retrieve_sliceable_dims(child)
480
481
482

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
483
            fn_recursive_retrieve_sliceable_dims(module)
484

Alexander Pivovarov's avatar
Alexander Pivovarov committed
485
        num_sliceable_layers = len(sliceable_head_dims)
486
487
488
489
490
491
492

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
493
            slice_size = num_sliceable_layers * [1]
494

Alexander Pivovarov's avatar
Alexander Pivovarov committed
495
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
496
497
498
499
500
501

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
522

523
524
525
526
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
527
528
529
530
531
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
532
        class_labels: Optional[torch.Tensor] = None,
533
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
534
        attention_mask: Optional[torch.Tensor] = None,
535
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
536
537
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
538
539
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
540
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
541
542
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
543
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
544
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
545
546
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
547
            cross_attention_kwargs (`dict`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
548
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
549
550
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Kashif Rasul's avatar
Kashif Rasul committed
551
552
553
554
555
556

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
557
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
558
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
559
560
561
562
563
564
565
566
567
568
569
570
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
571
572
573
574
575
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
576
577
578
579
580
581
582
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
583
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
584
585
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
586
            if isinstance(timestep, float):
587
588
589
590
591
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
592
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
593

594
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
595
        timesteps = timesteps.expand(sample.shape[0])
596

Patrick von Platen's avatar
Patrick von Platen committed
597
        t_emb = self.time_proj(timesteps)
598
599
600
601
602

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
603
604

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
605

Will Berman's avatar
Will Berman committed
606
        if self.class_embedding is not None:
607
608
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
609
610
611
612

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

613
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
614
615
616
617
618

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
619

Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
625
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
626
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
627
                sample, res_samples = downsample_block(
628
629
630
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
631
                    attention_mask=attention_mask,
632
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
633
634
635
636
637
638
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

639
640
641
642
643
644
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
645
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
646
647
648
649
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
650
        # 4. mid
651
652
653
654
655
656
657
658
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Patrick von Platen's avatar
Patrick von Platen committed
659

660
        if mid_block_additional_residual is not None:
661
            sample = sample + mid_block_additional_residual
662

Patrick von Platen's avatar
Patrick von Platen committed
663
        # 5. up
664
665
666
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
667
668
669
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

670
671
672
673
674
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

675
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
676
677
678
679
680
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
681
                    cross_attention_kwargs=cross_attention_kwargs,
682
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
683
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
684
685
                )
            else:
686
687
688
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
689

Patrick von Platen's avatar
Patrick von Platen committed
690
        # 6. post-process
691
692
693
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
694
695
        sample = self.conv_out(sample)

696
697
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
698

699
        return UNet2DConditionOutput(sample=sample)