Unverified Commit 585f9413 authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[Core] introduce `PeftAdapterMixin` module. (#6416)

* introduce integrations module.

* remove duplicate methods.

* better imports.

* move to loaders.py

* remove peftadaptermixin from modelmixin.

* add: peftadaptermixin selectively.

* add: entry to _toctree

* Empty-Commit
parent 86a26761
...@@ -212,6 +212,8 @@ ...@@ -212,6 +212,8 @@
title: Textual Inversion title: Textual Inversion
- local: api/loaders/unet - local: api/loaders/unet
title: UNet title: UNet
- local: api/loaders/peft
title: PEFT
title: Loaders title: Loaders
- sections: - sections:
- local: api/models/overview - local: api/models/overview
......
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PEFT
Diffusers supports working with adapters (such as [LoRA](../../using-diffusers/loading_adapters)) via the [`peft` library](https://huggingface.co/docs/peft/index). We provide a `PeftAdapterMixin` class to handle this for modeling classes in Diffusers (such as [`UNet2DConditionModel`]).
<Tip>
Refer to [this doc](../../tutorials/using_peft_for_inference.md) to get an overview of how to work with `peft` in Diffusers for inference.
</Tip>
## PeftAdapterMixin
[[autodoc]] loaders.peft.PeftAdapterMixin
\ No newline at end of file
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
from ..utils.import_utils import is_torch_available, is_transformers_available from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
def text_encoder_lora_state_dict(text_encoder): def text_encoder_lora_state_dict(text_encoder):
...@@ -64,6 +64,8 @@ if is_torch_available(): ...@@ -64,6 +64,8 @@ if is_torch_available():
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
_import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"]
_import_structure["peft"] = ["PeftAdapterMixin"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
if is_torch_available(): if is_torch_available():
...@@ -76,6 +78,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -76,6 +78,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .lora import LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin from .lora import LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin
from .single_file import FromSingleFileMixin from .single_file import FromSingleFileMixin
from .textual_inversion import TextualInversionLoaderMixin from .textual_inversion import TextualInversionLoaderMixin
from .peft import PeftAdapterMixin
else: else:
import sys import sys
......
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from ..utils import MIN_PEFT_VERSION, check_peft_version, is_peft_available
class PeftAdapterMixin:
"""
A class containing all functions for loading and using adapters weights that are supported in PEFT library. For
more details about adapters and injecting them on a transformer-based model, check out the documentation of PEFT
library: https://huggingface.co/docs/peft/index.
With this mixin, if the correct PEFT version is installed, it is possible to:
- Attach new adapters in the model.
- Attach multiple adapters and iteratively activate / deactivate them.
- Activate / deactivate all adapters from the model.
- Get a list of the active adapters.
"""
_hf_peft_config_loaded = False
def add_adapter(self, adapter_config, adapter_name: str = "default") -> None:
r"""
Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned
to the adapter to follow the convention of the PEFT library.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT
[documentation](https://huggingface.co/docs/peft).
Args:
adapter_config (`[~peft.PeftConfig]`):
The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt
methods.
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not is_peft_available():
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
from peft import PeftConfig, inject_adapter_in_model
if not self._hf_peft_config_loaded:
self._hf_peft_config_loaded = True
elif adapter_name in self.peft_config:
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
if not isinstance(adapter_config, PeftConfig):
raise ValueError(
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
)
# Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is
# handled by the `load_lora_layers` or `LoraLoaderMixin`. Therefore we set it to `None` here.
adapter_config.base_model_name_or_path = None
inject_adapter_in_model(adapter_config, self, adapter_name)
self.set_adapter(adapter_name)
def set_adapter(self, adapter_name: Union[str, List[str]]) -> None:
"""
Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Args:
adapter_name (Union[str, List[str]])):
The list of adapters to set or the adapter name in case of single adapter.
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
if isinstance(adapter_name, str):
adapter_name = [adapter_name]
missing = set(adapter_name) - set(self.peft_config)
if len(missing) > 0:
raise ValueError(
f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
f" current loaded adapters are: {list(self.peft_config.keys())}"
)
from peft.tuners.tuners_utils import BaseTunerLayer
_adapters_has_been_set = False
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "set_adapter"):
module.set_adapter(adapter_name)
# Previous versions of PEFT does not support multi-adapter inference
elif not hasattr(module, "set_adapter") and len(adapter_name) != 1:
raise ValueError(
"You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT."
" `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`"
)
else:
module.active_adapter = adapter_name
_adapters_has_been_set = True
if not _adapters_has_been_set:
raise ValueError(
"Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
)
def disable_adapters(self) -> None:
r"""
Disable all adapters attached to the model and fallback to inference with the base model only.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=False)
else:
# support for older PEFT versions
module.disable_adapters = True
def enable_adapters(self) -> None:
"""
Enable adapters that are attached to the model. The model will use `self.active_adapters()` to retrieve the
list of adapters to enable.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=True)
else:
# support for older PEFT versions
module.disable_adapters = False
def active_adapters(self) -> List[str]:
"""
Gets the current list of active adapters of the model.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not is_peft_available():
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
return module.active_adapter
...@@ -32,12 +32,10 @@ from .. import __version__ ...@@ -32,12 +32,10 @@ from .. import __version__
from ..utils import ( from ..utils import (
CONFIG_NAME, CONFIG_NAME,
FLAX_WEIGHTS_NAME, FLAX_WEIGHTS_NAME,
MIN_PEFT_VERSION,
SAFETENSORS_WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME, WEIGHTS_NAME,
_add_variant, _add_variant,
_get_model_file, _get_model_file,
check_peft_version,
deprecate, deprecate,
is_accelerate_available, is_accelerate_available,
is_torch_version, is_torch_version,
...@@ -197,7 +195,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin): ...@@ -197,7 +195,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"] _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
_supports_gradient_checkpointing = False _supports_gradient_checkpointing = False
_keys_to_ignore_on_load_unexpected = None _keys_to_ignore_on_load_unexpected = None
_hf_peft_config_loaded = False
def __init__(self): def __init__(self):
super().__init__() super().__init__()
...@@ -303,153 +300,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin): ...@@ -303,153 +300,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
""" """
self.set_use_memory_efficient_attention_xformers(False) self.set_use_memory_efficient_attention_xformers(False)
def add_adapter(self, adapter_config, adapter_name: str = "default") -> None:
r"""
Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned
to the adapter to follow the convention of the PEFT library.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT
[documentation](https://huggingface.co/docs/peft).
Args:
adapter_config (`[~peft.PeftConfig]`):
The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt
methods.
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
from peft import PeftConfig, inject_adapter_in_model
if not self._hf_peft_config_loaded:
self._hf_peft_config_loaded = True
elif adapter_name in self.peft_config:
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
if not isinstance(adapter_config, PeftConfig):
raise ValueError(
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
)
# Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is
# handled by the `load_lora_layers` or `LoraLoaderMixin`. Therefore we set it to `None` here.
adapter_config.base_model_name_or_path = None
inject_adapter_in_model(adapter_config, self, adapter_name)
self.set_adapter(adapter_name)
def set_adapter(self, adapter_name: Union[str, List[str]]) -> None:
"""
Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Args:
adapter_name (Union[str, List[str]])):
The list of adapters to set or the adapter name in case of single adapter.
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
if isinstance(adapter_name, str):
adapter_name = [adapter_name]
missing = set(adapter_name) - set(self.peft_config)
if len(missing) > 0:
raise ValueError(
f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
f" current loaded adapters are: {list(self.peft_config.keys())}"
)
from peft.tuners.tuners_utils import BaseTunerLayer
_adapters_has_been_set = False
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "set_adapter"):
module.set_adapter(adapter_name)
# Previous versions of PEFT does not support multi-adapter inference
elif not hasattr(module, "set_adapter") and len(adapter_name) != 1:
raise ValueError(
"You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT."
" `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`"
)
else:
module.active_adapter = adapter_name
_adapters_has_been_set = True
if not _adapters_has_been_set:
raise ValueError(
"Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
)
def disable_adapters(self) -> None:
r"""
Disable all adapters attached to the model and fallback to inference with the base model only.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=False)
else:
# support for older PEFT versions
module.disable_adapters = True
def enable_adapters(self) -> None:
"""
Enable adapters that are attached to the model. The model will use `self.active_adapters()` to retrieve the
list of adapters to enable.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=True)
else:
# support for older PEFT versions
module.disable_adapters = False
def active_adapters(self) -> List[str]:
"""
Gets the current list of active adapters of the model.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
return module.active_adapter
def save_pretrained( def save_pretrained(
self, self,
save_directory: Union[str, os.PathLike], save_directory: Union[str, os.PathLike],
......
...@@ -6,7 +6,7 @@ import torch.nn.functional as F ...@@ -6,7 +6,7 @@ import torch.nn.functional as F
from torch import nn from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import UNet2DConditionLoadersMixin from ..loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ..utils import BaseOutput from ..utils import BaseOutput
from .attention import BasicTransformerBlock from .attention import BasicTransformerBlock
from .attention_processor import ( from .attention_processor import (
...@@ -33,7 +33,7 @@ class PriorTransformerOutput(BaseOutput): ...@@ -33,7 +33,7 @@ class PriorTransformerOutput(BaseOutput):
predicted_image_embedding: torch.FloatTensor predicted_image_embedding: torch.FloatTensor
class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
""" """
A Prior Transformer model. A Prior Transformer model.
......
...@@ -19,7 +19,7 @@ import torch.nn as nn ...@@ -19,7 +19,7 @@ import torch.nn as nn
import torch.utils.checkpoint import torch.utils.checkpoint
from ..configuration_utils import ConfigMixin, register_to_config from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import UNet2DConditionLoadersMixin from ..loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
from .activations import get_activation from .activations import get_activation
from .attention_processor import ( from .attention_processor import (
...@@ -68,7 +68,7 @@ class UNet2DConditionOutput(BaseOutput): ...@@ -68,7 +68,7 @@ class UNet2DConditionOutput(BaseOutput):
sample: torch.FloatTensor = None sample: torch.FloatTensor = None
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
r""" r"""
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
shaped output. shaped output.
......
...@@ -21,6 +21,7 @@ from torch import nn ...@@ -21,6 +21,7 @@ from torch import nn
from torch.utils.checkpoint import checkpoint from torch.utils.checkpoint import checkpoint
from ..configuration_utils import ConfigMixin, register_to_config from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import PeftAdapterMixin
from .attention import BasicTransformerBlock, SkipFFTransformerBlock from .attention import BasicTransformerBlock, SkipFFTransformerBlock
from .attention_processor import ( from .attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS, ADDED_KV_ATTENTION_PROCESSORS,
...@@ -35,7 +36,7 @@ from .normalization import GlobalResponseNorm, RMSNorm ...@@ -35,7 +36,7 @@ from .normalization import GlobalResponseNorm, RMSNorm
from .resnet import Downsample2D, Upsample2D from .resnet import Downsample2D, Upsample2D
class UVit2DModel(ModelMixin, ConfigMixin): class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True _supports_gradient_checkpointing = True
@register_to_config @register_to_config
......
...@@ -20,7 +20,7 @@ import torch ...@@ -20,7 +20,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...models.attention_processor import ( from ...models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS, ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS,
...@@ -34,7 +34,7 @@ from ...utils import USE_PEFT_BACKEND, is_torch_version ...@@ -34,7 +34,7 @@ from ...utils import USE_PEFT_BACKEND, is_torch_version
from .modeling_wuerstchen_common import AttnBlock, ResBlock, TimestepBlock, WuerstchenLayerNorm from .modeling_wuerstchen_common import AttnBlock, ResBlock, TimestepBlock, WuerstchenLayerNorm
class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
unet_name = "prior" unet_name = "prior"
_supports_gradient_checkpointing = True _supports_gradient_checkpointing = True
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment