unet_2d_condition.py 28.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
23
from ..utils import BaseOutput, logging
24
from .cross_attention import AttnProcessor
25
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
26
from .modeling_utils import ModelMixin
27
from .unet_2d_blocks import (
28
29
30
31
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
32
    UNetMidBlock2DSimpleCrossAttn,
33
34
35
36
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
38


39
40
41
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


42
43
44
45
46
47
48
49
50
51
52
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


53
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
54
55
56
57
58
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
59
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
60
61

    Parameters:
62
63
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
64
65
66
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
67
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
68
69
70
71
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
72
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
73
74
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
75
76
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
77
78
79
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
80
81
82
83
84
85
86
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
87
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
88
89
90
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
91
92
93
94
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately
            summed with the time embeddings. Choose from `None`, `"timestep"`, or `"identity"`.
95
96
97
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
98
99
100
101
102
103
104
105
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
        conv_out_kernel (`int`, *optional*, default to `3`): the Kernel size of `conv_out` layer.
Kashif Rasul's avatar
Kashif Rasul committed
106
107
    """

108
109
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
113
114
115
116
117
118
119
120
121
122
123
124
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
125
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
126
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
127
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
128
129
130
131
132
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
133
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
134
135
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
Suraj Patil's avatar
Suraj Patil committed
136
        attention_head_dim: Union[int, Tuple[int]] = 8,
137
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
138
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
139
        class_embed_type: Optional[str] = None,
140
        num_class_embeds: Optional[int] = None,
141
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
142
        resnet_time_scale_shift: str = "default",
143
144
145
146
147
        time_embedding_type: str = "positional",  # fourier, positional
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Patrick von Platen's avatar
Patrick von Platen committed
148
149
150
151
152
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
174
        # input
175
176
177
178
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
179
180

        # time
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        if time_embedding_type == "fourier":
            time_embed_dim = block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
                f"{time_embedding_type} does not exist. Pleaes make sure to use one of `fourier` or `positional`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
198

199
200
201
202
203
204
205
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
206

207
        # class embedding
Will Berman's avatar
Will Berman committed
208
        if class_embed_type is None and num_class_embeds is not None:
209
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
210
211
212
213
214
215
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        else:
            self.class_embedding = None
216

Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

220
221
222
        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
223
224
225
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Patrick von Platen's avatar
Patrick von Platen committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
242
                resnet_groups=norm_num_groups,
243
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
244
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
245
                downsample_padding=downsample_padding,
246
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
247
                use_linear_projection=use_linear_projection,
248
                only_cross_attention=only_cross_attention[i],
249
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
250
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
254
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
282
283
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
284
285
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
286

287
288
289
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
290
291
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
292
        reversed_attention_head_dim = list(reversed(attention_head_dim))
293
        only_cross_attention = list(reversed(only_cross_attention))
294

Patrick von Platen's avatar
Patrick von Platen committed
295
296
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
297
298
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
299
300
301
302
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

303
304
305
306
307
308
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
316

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
317
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
318
319
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
320
                resnet_groups=norm_num_groups,
321
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
322
                attn_num_head_channels=reversed_attention_head_dim[i],
323
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
324
                use_linear_projection=use_linear_projection,
325
                only_cross_attention=only_cross_attention[i],
326
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
327
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330
331
332
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
333
334
335
336
337
338
339
340
341
342
343
344
345
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
346

347
348
349
350
351
352
353
    @property
    def attn_processors(self) -> Dict[str, AttnProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
354
        # set recursively
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]):
        r"""
        Parameters:
            `processor (`dict` of `AttnProcessor` or `AttnProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                of **all** `CrossAttention` layers.
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.:

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
389
            if hasattr(module, "set_processor"):
390
391
392
393
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
394

395
396
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
397

398
399
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
400

401
    def set_attention_slice(self, slice_size):
402
403
        r"""
        Enable sliced attention computation.
404

405
406
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_slicable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_slicable_dims(module)

        num_slicable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_slicable_layers * [1]

        slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
465

466
467
468
469
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
470
471
472
473
474
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
475
        class_labels: Optional[torch.Tensor] = None,
476
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
477
        attention_mask: Optional[torch.Tensor] = None,
478
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
479
480
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
481
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
482
483
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
484
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
485
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
486
487
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
488
489
490
491
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Kashif Rasul's avatar
Kashif Rasul committed
492
493
494
495
496
497

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
512
513
514
515
516
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
517
518
519
520
521
522
523
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
524
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
525
526
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
527
            if isinstance(timestep, float):
528
529
530
531
532
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
533
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
534

535
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
536
        timesteps = timesteps.expand(sample.shape[0])
537

Patrick von Platen's avatar
Patrick von Platen committed
538
        t_emb = self.time_proj(timesteps)
539
540
541
542
543

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
544
545

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
546

Will Berman's avatar
Will Berman committed
547
        if self.class_embedding is not None:
548
549
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
550
551
552
553

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

554
555
556
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

Patrick von Platen's avatar
Patrick von Platen committed
557
558
559
560
561
562
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
563
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
564
                sample, res_samples = downsample_block(
565
566
567
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
568
                    attention_mask=attention_mask,
569
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
570
571
572
573
574
575
576
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
577
578
579
580
581
582
583
584
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Patrick von Platen's avatar
Patrick von Platen committed
585
586

        # 5. up
587
588
589
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
590
591
592
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

593
594
595
596
597
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

598
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
599
600
601
602
603
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
604
                    cross_attention_kwargs=cross_attention_kwargs,
605
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
606
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
607
608
                )
            else:
609
610
611
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
Patrick von Platen's avatar
Patrick von Platen committed
612
        # 6. post-process
613
614
615
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
616
617
        sample = self.conv_out(sample)

618
619
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
620

621
        return UNet2DConditionOutput(sample=sample)