unet_2d_condition.py 22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..utils import BaseOutput, logging
23
from .cross_attention import AttnProcessor
Patrick von Platen's avatar
Patrick von Platen committed
24
from .embeddings import TimestepEmbedding, Timesteps
25
from .modeling_utils import ModelMixin
26
from .unet_2d_blocks import (
27
28
29
30
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
31
    UNetMidBlock2DSimpleCrossAttn,
32
33
34
35
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
36
37


38
39
40
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


41
42
43
44
45
46
47
48
49
50
51
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


Patrick von Platen's avatar
Patrick von Platen committed
52
class UNet2DConditionModel(ModelMixin, ConfigMixin):
Kashif Rasul's avatar
Kashif Rasul committed
53
54
55
56
57
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
58
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
59
60

    Parameters:
61
62
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
63
64
65
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
66
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
67
68
69
70
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
71
72
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`.
Kashif Rasul's avatar
Kashif Rasul committed
73
74
75
76
77
78
79
80
81
82
83
84
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
85
86
87
88
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately
            summed with the time embeddings. Choose from `None`, `"timestep"`, or `"identity"`.
Kashif Rasul's avatar
Kashif Rasul committed
89
90
    """

91
92
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
96
97
98
99
100
101
102
103
104
105
106
107
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
Will Berman's avatar
Will Berman committed
108
        mid_block_type: str = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
109
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
110
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
111
112
113
114
115
116
117
118
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: int = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
Suraj Patil's avatar
Suraj Patil committed
119
        attention_head_dim: Union[int, Tuple[int]] = 8,
120
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
121
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
122
        class_embed_type: Optional[str] = None,
123
        num_class_embeds: Optional[int] = None,
124
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
125
        resnet_time_scale_shift: str = "default",
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

141
        # class embedding
Will Berman's avatar
Will Berman committed
142
        if class_embed_type is None and num_class_embeds is not None:
143
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
144
145
146
147
148
149
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        else:
            self.class_embedding = None
150

Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

155
156
157
        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
158
159
160
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
177
                resnet_groups=norm_num_groups,
178
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
179
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
180
                downsample_padding=downsample_padding,
181
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
182
                use_linear_projection=use_linear_projection,
183
                only_cross_attention=only_cross_attention[i],
184
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
185
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
186
187
188
189
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
219

220
221
222
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
223
224
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
225
        reversed_attention_head_dim = list(reversed(attention_head_dim))
226
        only_cross_attention = list(reversed(only_cross_attention))
Patrick von Platen's avatar
Patrick von Platen committed
227
228
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
229
230
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
234
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

235
236
237
238
239
240
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
247
248

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
249
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
250
251
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
252
                resnet_groups=norm_num_groups,
253
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
254
                attn_num_head_channels=reversed_attention_head_dim[i],
255
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
256
                use_linear_projection=use_linear_projection,
257
                only_cross_attention=only_cross_attention[i],
258
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
259
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
264
265
266
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
        self.conv_act = nn.SiLU()
267
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
268

269
270
271
272
273
274
275
276
277
278
279
280
    def set_attn_processor(self, processor: AttnProcessor):
        # set recursively
        def fn_recursive_attn_processor(module: torch.nn.Module):
            if hasattr(module, "set_processor"):
                module.set_processor(processor)

            for child in module.children():
                fn_recursive_attn_processor(child)

        for module in self.children():
            fn_recursive_attn_processor(module)

281
    def set_attention_slice(self, slice_size):
282
283
        r"""
        Enable sliced attention computation.
284

285
286
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_slicable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_slicable_dims(module)

        num_slicable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_slicable_layers * [1]

        slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
345

346
347
348
349
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
350
351
352
353
354
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
355
        class_labels: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
356
        attention_mask: Optional[torch.Tensor] = None,
357
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
358
359
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
360
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
361
362
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
363
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
364
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
365
366
367
368
369
370
371
372
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
387
388
389
390
391
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
392
393
394
395
396
397
398
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
399
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
400
401
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
402
            if isinstance(timestep, float):
403
404
405
406
407
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
408
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
409

410
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
411
        timesteps = timesteps.expand(sample.shape[0])
412

Patrick von Platen's avatar
Patrick von Platen committed
413
        t_emb = self.time_proj(timesteps)
414
415
416
417
418
419

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)
Patrick von Platen's avatar
Patrick von Platen committed
420

Will Berman's avatar
Will Berman committed
421
        if self.class_embedding is not None:
422
423
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
424
425
426
427

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

428
429
430
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

Patrick von Platen's avatar
Patrick von Platen committed
431
432
433
434
435
436
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
437
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
438
                sample, res_samples = downsample_block(
439
440
441
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
442
                    attention_mask=attention_mask,
443
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
447
448
449
450
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
Will Berman's avatar
Will Berman committed
451
        sample = self.mid_block(
452
453
454
455
456
            sample,
            emb,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            cross_attention_kwargs=cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
457
        )
Patrick von Platen's avatar
Patrick von Platen committed
458
459

        # 5. up
460
461
462
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
463
464
465
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

466
467
468
469
470
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

471
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
472
473
474
475
476
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
477
                    cross_attention_kwargs=cross_attention_kwargs,
478
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
479
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
480
481
                )
            else:
482
483
484
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
Patrick von Platen's avatar
Patrick von Platen committed
485
        # 6. post-process
486
        sample = self.conv_norm_out(sample)
Patrick von Platen's avatar
Patrick von Platen committed
487
488
489
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

490
491
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
492

493
        return UNet2DConditionOutput(sample=sample)