unet_2d_condition.py 36.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.nn.functional as F
20
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..loaders import UNet2DConditionLoadersMixin
24
from ..utils import BaseOutput, deprecate, logging
25
from .attention_processor import AttentionProcessor, AttnProcessor
26
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
27
from .modeling_utils import ModelMixin
28
from .unet_2d_blocks import (
29
30
31
32
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
33
    UNetMidBlock2DSimpleCrossAttn,
34
35
36
37
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
38
39


40
41
42
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


43
44
45
46
47
48
49
50
51
52
53
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


54
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
55
56
57
58
59
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
60
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
61
62

    Parameters:
63
64
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
65
66
67
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
68
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
69
70
71
72
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
73
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
74
75
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
76
77
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
78
79
80
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
81
82
83
84
85
86
87
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
88
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
89
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
90
91
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
William Berman's avatar
William Berman committed
92
93
        encoder_hid_dim (`int`, *optional*, defaults to None):
            If given, `encoder_hidden_states` will be projected from this dimension to `cross_attention_dim`.
Kashif Rasul's avatar
Kashif Rasul committed
94
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
95
96
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
97
98
        class_embed_type (`str`, *optional*, defaults to None):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
99
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
100
101
102
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
103
104
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
105
106
107
        time_embedding_act_fn (`str`, *optional*, default to `None`):
            Optional activation function to use on the time embeddings only one time before they as passed to the rest
            of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`.
108
109
110
111
112
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
113
114
115
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
116
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
117
118
119
120
121
122
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the
            `only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will
            default to `False`.
Kashif Rasul's avatar
Kashif Rasul committed
123
124
    """

125
126
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
130
131
132
133
134
135
136
137
138
139
140
141
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
142
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
143
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
144
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
145
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
146
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
147
148
149
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
150
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
151
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
152
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
William Berman's avatar
William Berman committed
153
        encoder_hid_dim: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
154
        attention_head_dim: Union[int, Tuple[int]] = 8,
155
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
156
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
157
        class_embed_type: Optional[str] = None,
158
        num_class_embeds: Optional[int] = None,
159
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
160
        resnet_time_scale_shift: str = "default",
161
162
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
163
        time_embedding_type: str = "positional",
164
        time_embedding_act_fn: Optional[str] = None,
165
166
167
168
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
169
        projection_class_embeddings_input_dim: Optional[int] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
170
        class_embeddings_concat: bool = False,
171
        mid_block_only_cross_attention: Optional[bool] = None,
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
175
176
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
198
199
200
201
202
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

203
204
205
206
207
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
208
        # input
209
210
211
212
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
213
214

        # time
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        if time_embedding_type == "fourier":
            time_embed_dim = block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
230
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
231
            )
Patrick von Platen's avatar
Patrick von Platen committed
232

233
234
235
236
237
238
239
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
240

William Berman's avatar
William Berman committed
241
242
243
244
245
        if encoder_hid_dim is not None:
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        else:
            self.encoder_hid_proj = None

246
        # class embedding
Will Berman's avatar
Will Berman committed
247
        if class_embed_type is None and num_class_embeds is not None:
248
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
249
250
251
252
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
253
254
255
256
257
258
259
260
261
262
263
264
265
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
266
267
268
269
270
271
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
272
273
        else:
            self.class_embedding = None
274

275
276
277
278
279
280
281
282
283
284
285
286
287
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        elif time_embedding_act_fn == "swish":
            self.time_embed_act = lambda x: F.silu(x)
        elif time_embedding_act_fn == "mish":
            self.time_embed_act = nn.Mish()
        elif time_embedding_act_fn == "silu":
            self.time_embed_act = nn.SiLU()
        elif time_embedding_act_fn == "gelu":
            self.time_embed_act = nn.GELU()
        else:
            raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}")

Patrick von Platen's avatar
Patrick von Platen committed
288
289
290
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

291
        if isinstance(only_cross_attention, bool):
292
293
294
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

295
296
            only_cross_attention = [only_cross_attention] * len(down_block_types)

297
298
299
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

Suraj Patil's avatar
Suraj Patil committed
300
301
302
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
303
304
305
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

306
307
308
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
309
310
311
312
313
314
315
316
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
317
318
319
320
321
322
323
324
325
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
326
                num_layers=layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
327
328
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
329
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
330
331
332
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
333
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
334
                cross_attention_dim=cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
335
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
336
                downsample_padding=downsample_padding,
337
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
338
                use_linear_projection=use_linear_projection,
339
                only_cross_attention=only_cross_attention[i],
340
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
341
                resnet_time_scale_shift=resnet_time_scale_shift,
342
343
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
344
345
346
347
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
348
349
350
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
351
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
352
353
354
355
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
356
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
357
358
359
360
361
362
363
364
365
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
366
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
367
368
369
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
370
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
371
372
373
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
374
                skip_time_act=resnet_skip_time_act,
375
                only_cross_attention=mid_block_only_cross_attention,
Will Berman's avatar
Will Berman committed
376
            )
377
378
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
379
380
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
381

382
383
384
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
385
386
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
387
        reversed_attention_head_dim = list(reversed(attention_head_dim))
388
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
389
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
390
        only_cross_attention = list(reversed(only_cross_attention))
391

Patrick von Platen's avatar
Patrick von Platen committed
392
393
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
394
395
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
396
397
398
399
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

400
401
402
403
404
405
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
406
407
408

            up_block = get_up_block(
                up_block_type,
409
                num_layers=reversed_layers_per_block[i] + 1,
Patrick von Platen's avatar
Patrick von Platen committed
410
411
412
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
413
                temb_channels=blocks_time_embed_dim,
414
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
415
416
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
417
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
418
                cross_attention_dim=reversed_cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
419
                attn_num_head_channels=reversed_attention_head_dim[i],
420
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
421
                use_linear_projection=use_linear_projection,
422
                only_cross_attention=only_cross_attention[i],
423
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
424
                resnet_time_scale_shift=resnet_time_scale_shift,
425
426
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
431
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
432
433
434
435
436
437
438
439
440
441
442
443
444
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
445

446
447
448
449
450
451
452
453
454
455
    @property
    def in_channels(self):
        deprecate(
            "in_channels",
            "1.0.0",
            "Accessing `in_channels` directly via unet.in_channels is deprecated. Please use `unet.config.in_channels` instead",
            standard_warn=False,
        )
        return self.config.in_channels

456
    @property
Patrick von Platen's avatar
Patrick von Platen committed
457
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
458
459
460
461
462
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
463
        # set recursively
464
465
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
466
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
467
468
469
470
471
472
473
474
475
476
477
478
479
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
480
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
481
482
        r"""
        Parameters:
Patrick von Platen's avatar
Patrick von Platen committed
483
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
484
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Patrick von Platen's avatar
Patrick von Platen committed
485
                of **all** `Attention` layers.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
486
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
487
488
489
490
491
492
493
494
495
496
497

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
498
            if hasattr(module, "set_processor"):
499
500
501
502
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
503

504
505
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
506

507
508
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
509

510
511
512
513
514
515
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

516
    def set_attention_slice(self, slice_size):
517
518
        r"""
        Enable sliced attention computation.
519

520
521
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
522

523
524
525
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
526
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
527
528
529
530
531
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
532
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
533
534
535
536
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
537
                fn_recursive_retrieve_sliceable_dims(child)
538
539
540

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
541
            fn_recursive_retrieve_sliceable_dims(module)
542

Alexander Pivovarov's avatar
Alexander Pivovarov committed
543
        num_sliceable_layers = len(sliceable_head_dims)
544
545
546
547
548
549
550

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
551
            slice_size = num_sliceable_layers * [1]
552

Alexander Pivovarov's avatar
Alexander Pivovarov committed
553
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
554
555
556
557
558
559

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
580

581
582
583
584
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
585
586
587
588
589
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
590
        class_labels: Optional[torch.Tensor] = None,
591
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
592
        attention_mask: Optional[torch.Tensor] = None,
593
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
594
595
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
596
597
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
598
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
599
600
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
601
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
602
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
603
604
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
605
            cross_attention_kwargs (`dict`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
606
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
607
608
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Kashif Rasul's avatar
Kashif Rasul committed
609
610
611
612
613
614

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
615
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
616
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
617
618
619
620
621
622
623
624
625
626
627
628
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
629
630
631
632
633
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
634
635
636
637
638
639
640
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
641
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
642
643
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
644
            if isinstance(timestep, float):
645
646
647
648
649
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
650
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
651

652
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
653
        timesteps = timesteps.expand(sample.shape[0])
654

Patrick von Platen's avatar
Patrick von Platen committed
655
        t_emb = self.time_proj(timesteps)
656
657
658
659
660

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
661
662

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
663

Will Berman's avatar
Will Berman committed
664
        if self.class_embedding is not None:
665
666
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
667
668
669
670

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

671
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
672
673
674
675
676

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
677

678
679
680
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

William Berman's avatar
William Berman committed
681
682
683
        if self.encoder_hid_proj is not None:
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
684
685
686
687
688
689
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
690
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
691
                sample, res_samples = downsample_block(
692
693
694
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
695
                    attention_mask=attention_mask,
696
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
697
698
699
700
701
702
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

703
704
705
706
707
708
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
709
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
710
711
712
713
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
714
        # 4. mid
715
716
717
718
719
720
721
722
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Patrick von Platen's avatar
Patrick von Platen committed
723

724
        if mid_block_additional_residual is not None:
725
            sample = sample + mid_block_additional_residual
726

Patrick von Platen's avatar
Patrick von Platen committed
727
        # 5. up
728
729
730
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
731
732
733
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

734
735
736
737
738
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

739
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
740
741
742
743
744
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
745
                    cross_attention_kwargs=cross_attention_kwargs,
746
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
747
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
748
749
                )
            else:
750
751
752
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
753

Patrick von Platen's avatar
Patrick von Platen committed
754
        # 6. post-process
755
756
757
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
758
759
        sample = self.conv_out(sample)

760
761
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
762

763
        return UNet2DConditionOutput(sample=sample)