"debug_conversion.py" did not exist on "87060e6a9c7754b648e621175b4d73161e82906e"
scheduling_ddpm.py 13.7 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
83
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
84
    [`~ConfigMixin.from_config`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
102
103
104
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.

    """

105
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
106
107
    def __init__(
        self,
Partho's avatar
Partho committed
108
109
110
111
112
113
114
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
115
        **kwargs,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
116
    ):
117
118
        deprecate(
            "tensor_format",
Patrick von Platen's avatar
Patrick von Platen committed
119
            "0.6.0",
120
121
122
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
123

124
        if trained_betas is not None:
125
            self.betas = torch.from_numpy(trained_betas)
126
        elif beta_schedule == "linear":
127
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
128
129
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
130
131
132
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
133
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
134
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
135
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
136
137
138
139
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
140
141
142
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
143
        self.alphas = 1.0 - self.betas
144
145
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
146

147
148
149
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

150
151
        # setable values
        self.num_inference_steps = None
152
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
153

154
155
        self.variance_type = variance_type

156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

170
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
171
172
173
174
175
176
177
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
178
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
179
        self.num_inference_steps = num_inference_steps
180
        timesteps = np.arange(
181
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
182
183
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
184

185
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
186
187
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
188

Kashif Rasul's avatar
Kashif Rasul committed
189
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
190
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
191
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
192
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
193

194
195
196
        if variance_type is None:
            variance_type = self.config.variance_type

197
        # hacks - were probably added for training stability
198
        if variance_type == "fixed_small":
199
            variance = torch.clamp(variance, min=1e-20)
200
        # for rl-diffuser https://arxiv.org/abs/2205.09991
201
        elif variance_type == "fixed_small_log":
202
            variance = torch.log(torch.clamp(variance, min=1e-20))
203
        elif variance_type == "fixed_large":
204
            variance = self.betas[t]
205
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
206
            # Glide max_log
207
            variance = torch.log(self.betas[t])
208
209
210
211
212
213
214
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217

        return variance

218
219
    def step(
        self,
220
        model_output: torch.FloatTensor,
221
        timestep: int,
222
        sample: torch.FloatTensor,
223
        predict_epsilon=True,
Patrick von Platen's avatar
Patrick von Platen committed
224
        generator=None,
225
        return_dict: bool = True,
226
    ) -> Union[DDPMSchedulerOutput, Tuple]:
227
228
229
230
231
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
232
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
233
            timestep (`int`): current discrete timestep in the diffusion chain.
234
            sample (`torch.FloatTensor`):
235
236
237
238
                current instance of sample being created by diffusion process.
            predict_epsilon (`bool`):
                optional flag to use when model predicts the samples directly instead of the noise, epsilon.
            generator: random number generator.
239
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
240
241

        Returns:
242
243
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
244
            returning a tuple, the first element is the sample tensor.
245
246

        """
247
        t = timestep
248

249
250
251
252
253
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
254
        # 1. compute alphas, betas
255
256
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

260
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
261
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
262
        if predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
263
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
264
        else:
Patrick von Platen's avatar
Patrick von Platen committed
265
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
266
267

        # 3. Clip "predicted x_0"
268
        if self.config.clip_sample:
269
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
270

271
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
272
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
273
274
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
275

276
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
277
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
278
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
279

Patrick von Platen's avatar
Patrick von Platen committed
280
281
282
        # 6. Add noise
        variance = 0
        if t > 0:
283
284
285
            noise = torch.randn(
                model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
            ).to(model_output.device)
286
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
287
288
289

        pred_prev_sample = pred_prev_sample + variance

290
291
292
        if not return_dict:
            return (pred_prev_sample,)

293
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
294

Partho's avatar
Partho committed
295
296
    def add_noise(
        self,
297
298
299
300
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
301
302
303
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
304

anton-l's avatar
anton-l committed
305
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
306
307
308
309
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
310
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
311
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
312
313
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
314
315

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
316
        return noisy_samples
anton-l's avatar
anton-l committed
317

Patrick von Platen's avatar
improve  
Patrick von Platen committed
318
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
319
        return self.config.num_train_timesteps