scheduling_karras_ve.py 9.52 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Anton Lozhkov's avatar
Anton Lozhkov committed
23
from ..utils import BaseOutput
24
25
26
from .scheduling_utils import SchedulerMixin


27
28
29
30
31
32
33
34
35
36
@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Derivative of predicted original image sample (x_0).
38
39
40
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
41
42
43
44
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor
45
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


48
49
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
50
51
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
52

Suraj Patil's avatar
Suraj Patil committed
53
54
55
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
56

57
58
59
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
60
    [`~ConfigMixin.from_config`] functions.
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
    Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
    optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.

    Args:
        sigma_min (`float`): minimum noise magnitude
        sigma_max (`float`): maximum noise magnitude
        s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
            A reasonable range is [1.000, 1.011].
        s_churn (`float`): the parameter controlling the overall amount of stochasticity.
            A reasonable range is [0, 100].
        s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
            A reasonable range is [0, 10].
        s_max (`float`): the end value of the sigma range where we add noise.
            A reasonable range is [0.2, 80].

78
79
80
81
82
    """

    @register_to_config
    def __init__(
        self,
83
84
85
86
87
88
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
89
    ):
90
91
92
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

93
        # setable values
94
        self.num_inference_steps: int = None
95
        self.timesteps: np.IntTensor = None
96
        self.schedule: torch.FloatTensor = None  # sigma(t_i)
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

112
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
113
114
115
116
117
118
119
120
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.

        """
121
        self.num_inference_steps = num_inference_steps
122
123
        timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
124
        schedule = [
125
            (
126
                self.config.sigma_max**2
127
128
                * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
            )
129
130
            for i in self.timesteps
        ]
131
        self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)
132

133
    def add_noise_to_input(
134
135
        self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[torch.FloatTensor, float]:
136
        """
Suraj Patil's avatar
Suraj Patil committed
137
138
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
139
140

        TODO Args:
141
        """
142
143
        if self.config.s_min <= sigma <= self.config.s_max:
            gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
144
145
146
147
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
148
        eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
149
150
151
152
153
154
155
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
156
        model_output: torch.FloatTensor,
157
158
        sigma_hat: float,
        sigma_prev: float,
159
        sample_hat: torch.FloatTensor,
160
161
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
162
163
164
165
166
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
167
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
168
169
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
170
            sample_hat (`torch.FloatTensor`): TODO
171
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
172
173

            KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
174
175
176
177
        Returns:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
178
179

        """
180

181
182
183
184
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

185
186
187
        if not return_dict:
            return (sample_prev, derivative)

188
189
190
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
191
192
193

    def step_correct(
        self,
194
        model_output: torch.FloatTensor,
195
196
        sigma_hat: float,
        sigma_prev: float,
197
198
199
        sample_hat: torch.FloatTensor,
        sample_prev: torch.FloatTensor,
        derivative: torch.FloatTensor,
200
201
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
202
203
204
205
        """
        Correct the predicted sample based on the output model_output of the network. TODO complete description

        Args:
206
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
207
208
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
209
210
211
            sample_hat (`torch.FloatTensor`): TODO
            sample_prev (`torch.FloatTensor`): TODO
            derivative (`torch.FloatTensor`): TODO
212
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
213
214
215

        Returns:
            prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
216

217
        """
218
219
220
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
221
222
223
224

        if not return_dict:
            return (sample_prev, derivative)

225
226
227
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
228
229
230

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()