scheduling_ddpm.py 13.5 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Anton Lozhkov's avatar
Anton Lozhkov committed
25
from ..utils import BaseOutput
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
83
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
84
    [`~ConfigMixin.from_config`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
102
103
104
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.

    """

105
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
106
107
    def __init__(
        self,
Partho's avatar
Partho committed
108
109
110
111
112
113
114
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
115
    ):
116
        if trained_betas is not None:
117
            self.betas = torch.from_numpy(trained_betas)
118
        elif beta_schedule == "linear":
119
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
120
121
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
122
123
124
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
125
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
126
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
127
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
128
129
130
131
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
132
133
134
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
135
        self.alphas = 1.0 - self.betas
136
137
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
138

139
140
141
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

142
143
        # setable values
        self.num_inference_steps = None
144
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
145

146
147
        self.variance_type = variance_type

148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

162
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
163
164
165
166
167
168
169
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
170
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
171
        self.num_inference_steps = num_inference_steps
172
        timesteps = np.arange(
173
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
174
175
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
176

177
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
178
179
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
180

Kashif Rasul's avatar
Kashif Rasul committed
181
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
182
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
183
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
184
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
185

186
187
188
        if variance_type is None:
            variance_type = self.config.variance_type

189
        # hacks - were probably added for training stability
190
        if variance_type == "fixed_small":
191
            variance = torch.clamp(variance, min=1e-20)
192
        # for rl-diffuser https://arxiv.org/abs/2205.09991
193
        elif variance_type == "fixed_small_log":
194
            variance = torch.log(torch.clamp(variance, min=1e-20))
195
        elif variance_type == "fixed_large":
196
            variance = self.betas[t]
197
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
198
            # Glide max_log
199
            variance = torch.log(self.betas[t])
200
201
202
203
204
205
206
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209

        return variance

210
211
    def step(
        self,
212
        model_output: torch.FloatTensor,
213
        timestep: int,
214
        sample: torch.FloatTensor,
215
        predict_epsilon=True,
Patrick von Platen's avatar
Patrick von Platen committed
216
        generator=None,
217
        return_dict: bool = True,
218
    ) -> Union[DDPMSchedulerOutput, Tuple]:
219
220
221
222
223
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
224
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
225
            timestep (`int`): current discrete timestep in the diffusion chain.
226
            sample (`torch.FloatTensor`):
227
228
229
230
                current instance of sample being created by diffusion process.
            predict_epsilon (`bool`):
                optional flag to use when model predicts the samples directly instead of the noise, epsilon.
            generator: random number generator.
231
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
232
233

        Returns:
234
235
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
236
            returning a tuple, the first element is the sample tensor.
237
238

        """
239
        t = timestep
240

241
242
243
244
245
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
246
        # 1. compute alphas, betas
247
248
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

252
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
253
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
254
        if predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
255
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
256
        else:
Patrick von Platen's avatar
Patrick von Platen committed
257
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
258
259

        # 3. Clip "predicted x_0"
260
        if self.config.clip_sample:
261
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
262

263
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
264
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
265
266
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
267

268
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
269
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
270
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
271

Patrick von Platen's avatar
Patrick von Platen committed
272
273
274
        # 6. Add noise
        variance = 0
        if t > 0:
275
276
277
            noise = torch.randn(
                model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
            ).to(model_output.device)
278
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
279
280
281

        pred_prev_sample = pred_prev_sample + variance

282
283
284
        if not return_dict:
            return (pred_prev_sample,)

285
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
286

Partho's avatar
Partho committed
287
288
    def add_noise(
        self,
289
290
291
292
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
293
294
295
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
296

anton-l's avatar
anton-l committed
297
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
298
299
300
301
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
302
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
303
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
304
305
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
306
307

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
308
        return noisy_samples
anton-l's avatar
anton-l committed
309

Patrick von Platen's avatar
improve  
Patrick von Platen committed
310
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
311
        return self.config.num_train_timesteps