loaders.py 115 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import copy
15
import os
16
import re
17
import warnings
18
from collections import defaultdict
19
20
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
21
from pathlib import Path
22
from typing import Callable, Dict, List, Optional, Union
23

24
import requests
25
import safetensors
26
import torch
27
import torch.nn.functional as F
28
from huggingface_hub import hf_hub_download, model_info
Will Berman's avatar
Will Berman committed
29
from torch import nn
30

31
32
33
34
35
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
36
37
    is_accelerate_available,
    is_omegaconf_available,
38
39
40
    is_transformers_available,
    logging,
)
41
from .utils.import_utils import BACKENDS_MAPPING
42
43


44
if is_transformers_available():
45
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer
46

47
48
49
if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.utils import set_module_tensor_to_device
50
51
52

logger = logging.get_logger(__name__)

53
54
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
55
56

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
57
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
58

59
60
61
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

62
63
64
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

65

Will Berman's avatar
Will Berman committed
66
67
68
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
69
        from .models.lora import LoRALinearLayer
70

Will Berman's avatar
Will Berman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

    def forward(self, input):
        return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input)


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

96
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
97
98
99
100
101
102
103
104
105
106
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


107
108
109
110
111
112
113
114
115
116
117
118
119
120
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


140
141
142
143
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
144
        self.mapping = dict(enumerate(state_dict.keys()))
145
146
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

147
148
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
149

150
151
152
153
154
155
156
157
158
159
160
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

161
162
163
164
165
166
167
168
169
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

170
171
172
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
173
                replace_key = remap_key(key, state_dict)
174
175
176
177
178
179
180
181
182
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
183
184
185
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

186
187
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
188
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
189
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
190
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
191
192
193
194
195
196
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
197
198
199
200
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
201
202
203
204
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
205
206
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
207
208
209
210
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
211
212
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
213
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
214
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
215
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
216
217
218
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
219
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
220
221
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
222
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
223
224
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
225
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
226
                The subfolder location of a model file within a larger model repository on the Hub or locally.
227
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
228
229
230
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
231
232

        """
233
234
235
236
237
238
239
240
241
242
243
        from .models.attention_processor import (
            AttnAddedKVProcessor,
            AttnAddedKVProcessor2_0,
            CustomDiffusionAttnProcessor,
            LoRAAttnAddedKVProcessor,
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
            SlicedAttnAddedKVProcessor,
            XFormersAttnProcessor,
        )
244
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
245
246
247
248
249
250
251
252
253

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
254
        weight_name = kwargs.pop("weight_name", None)
255
        use_safetensors = kwargs.pop("use_safetensors", None)
256
257
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
258
        network_alphas = kwargs.pop("network_alphas", None)
259
        is_network_alphas_none = network_alphas is None
260
261

        allow_pickle = False
262

263
        if use_safetensors is None:
264
            use_safetensors = True
265
            allow_pickle = True
266
267
268
269
270
271

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

272
        model_file = None
273
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
274
            # Let's first try to load .safetensors weights
275
            if (use_safetensors and weight_name is None) or (
276
277
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
278
279
280
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
281
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
282
283
284
285
286
287
288
289
290
291
292
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
293
294
295
                except IOError as e:
                    if not allow_pickle:
                        raise e
296
297
                    # try loading non-safetensors weights
                    pass
298
299
300
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
301
                    weights_name=weight_name or LORA_WEIGHT_NAME,
302
303
304
305
306
307
308
309
310
311
312
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
313
314
315
316
317
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}
318
        non_attn_lora_layers = []
319

320
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
321
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
322
323

        if is_lora:
324
325
326
327
328
329
330
331
332
333
334
335
            is_new_lora_format = all(
                key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
            )
            if is_new_lora_format:
                # Strip the `"unet"` prefix.
                is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
                if is_text_encoder_present:
                    warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                    warnings.warn(warn_message)
                unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
                state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

336
            lora_grouped_dict = defaultdict(dict)
337
338
339
340
341
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
342
343
344
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

345
346
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
347
348
                    network_alphas_ = copy.deepcopy(network_alphas)
                    for k in network_alphas_:
349
                        if k.replace(".alpha", "") in key:
350
351
352
353
354
355
356
                            mapped_network_alphas.update({attn_processor_key: network_alphas.pop(k)})

            if not is_network_alphas_none:
                if len(network_alphas) > 0:
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )
357
358
359

            if len(state_dict) > 0:
                raise ValueError(
360
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
361
362
                )

363
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
364
365
366
367
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

368
369
370
371
372
373
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
                if "lora.down.weight" in value_dict:
                    rank = value_dict["lora.down.weight"].shape[0]

                    if isinstance(attn_processor, LoRACompatibleConv):
374
375
376
377
378
379
380
381
382
383
384
385
386
                        in_features = attn_processor.in_channels
                        out_features = attn_processor.out_channels
                        kernel_size = attn_processor.kernel_size

                        lora = LoRAConv2dLayer(
                            in_features=in_features,
                            out_features=out_features,
                            rank=rank,
                            kernel_size=kernel_size,
                            stride=attn_processor.stride,
                            padding=attn_processor.padding,
                            network_alpha=mapped_network_alphas.get(key),
                        )
387
388
                    elif isinstance(attn_processor, LoRACompatibleLinear):
                        lora = LoRALinearLayer(
389
390
391
392
                            attn_processor.in_features,
                            attn_processor.out_features,
                            rank,
                            mapped_network_alphas.get(key),
393
394
395
396
397
398
399
                        )
                    else:
                        raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")

                    value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                    lora.load_state_dict(value_dict)
                    non_attn_lora_layers.append((attn_processor, lora))
Will Berman's avatar
Will Berman committed
400
                else:
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
                    # To handle SDXL.
                    rank_mapping = {}
                    hidden_size_mapping = {}
                    for projection_id in ["to_k", "to_q", "to_v", "to_out"]:
                        rank = value_dict[f"{projection_id}_lora.down.weight"].shape[0]
                        hidden_size = value_dict[f"{projection_id}_lora.up.weight"].shape[0]

                        rank_mapping.update({f"{projection_id}_lora.down.weight": rank})
                        hidden_size_mapping.update({f"{projection_id}_lora.up.weight": hidden_size})

                    if isinstance(
                        attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)
                    ):
                        cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1]
                        attn_processor_class = LoRAAttnAddedKVProcessor
                    else:
                        cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
                        if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)):
                            attn_processor_class = LoRAXFormersAttnProcessor
                        else:
                            attn_processor_class = (
                                LoRAAttnProcessor2_0
                                if hasattr(F, "scaled_dot_product_attention")
                                else LoRAAttnProcessor
                            )

                    if attn_processor_class is not LoRAAttnAddedKVProcessor:
                        attn_processors[key] = attn_processor_class(
                            rank=rank_mapping.get("to_k_lora.down.weight"),
                            hidden_size=hidden_size_mapping.get("to_k_lora.up.weight"),
                            cross_attention_dim=cross_attention_dim,
                            network_alpha=mapped_network_alphas.get(key),
                            q_rank=rank_mapping.get("to_q_lora.down.weight"),
                            q_hidden_size=hidden_size_mapping.get("to_q_lora.up.weight"),
                            v_rank=rank_mapping.get("to_v_lora.down.weight"),
                            v_hidden_size=hidden_size_mapping.get("to_v_lora.up.weight"),
                            out_rank=rank_mapping.get("to_out_lora.down.weight"),
                            out_hidden_size=hidden_size_mapping.get("to_out_lora.up.weight"),
                        )
440
                    else:
441
442
443
444
445
                        attn_processors[key] = attn_processor_class(
                            rank=rank_mapping.get("to_k_lora.down.weight", None),
                            hidden_size=hidden_size_mapping.get("to_k_lora.up.weight", None),
                            cross_attention_dim=cross_attention_dim,
                            network_alpha=mapped_network_alphas.get(key),
446
                        )
Will Berman's avatar
Will Berman committed
447

448
449
                    attn_processors[key].load_state_dict(value_dict)

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
478
        else:
479
480
481
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
482
483
484

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}
485
        non_attn_lora_layers = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in non_attn_lora_layers]
486
487
488
489

        # set layers
        self.set_attn_processor(attn_processors)

490
491
        # set ff layers
        for target_module, lora_layer in non_attn_lora_layers:
492
            target_module.set_lora_layer(lora_layer)
493

494
495
496
497
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
498
        weight_name: str = None,
499
        save_function: Callable = None,
500
501
        safe_serialization: bool = True,
        **kwargs,
502
503
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
504
        Save an attention processor to a directory so that it can be reloaded using the
505
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
506
507
508

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
509
                Directory to save an attention processor to. Will be created if it doesn't exist.
510
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
511
512
513
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
514
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
515
516
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
517
                `DIFFUSERS_SAVE_MODE`.
518
519
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
520
        """
521
522
523
524
525
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionXFormersAttnProcessor,
        )

526
527
528
529
530
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
531
532
533
534
535
536
537
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
538
539
540

        os.makedirs(save_directory, exist_ok=True)

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
560

561
        if weight_name is None:
562
            if safe_serialization:
563
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
564
            else:
565
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
566

567
        # Save the model
568
569
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
570
571
572
573


class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
574
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
575
576
    """

577
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
578
        r"""
Steven Liu's avatar
Steven Liu committed
579
580
581
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

604
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
621
622
        unique_tokens = set(tokens)
        for token in unique_tokens:
623
624
625
626
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
627
                    replacement += f" {token}_{i}"
628
629
630
631
632
633
634
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
635
        self,
636
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
637
638
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
639
640
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
641
642
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
643
644

        Parameters:
645
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
646
                Can be either one of the following or a list of them:
647

Steven Liu's avatar
Steven Liu committed
648
649
650
651
652
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
653
654
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
655
656
657
658

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
659
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
660
                Name of a custom weight file. This should be used when:
661

Steven Liu's avatar
Steven Liu committed
662
663
664
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
665
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
666
667
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
668
669
670
671
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
672
673
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
674
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
675
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
676
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
677
678
679
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
680
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
681
682
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
683
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
684
685
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
686
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
687
                The subfolder location of a model file within a larger model repository on the Hub or locally.
688
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
689
690
691
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
692
693
694

        Example:

Steven Liu's avatar
Steven Liu committed
695
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
712
713
714
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
715
716
717
718
719
720
721
722

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

723
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
724
725
726
727
728
729

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
730

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
757
            use_safetensors = True
758
759
760
761
762
763
764
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

765
        if not isinstance(pretrained_model_name_or_path, list):
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
819
820
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
821
                        weights_name=weight_name or TEXT_INVERSION_NAME,
822
823
824
825
826
827
828
829
830
831
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
832
833
834
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
835
836

            # 2. Load token and embedding correcly from file
837
            loaded_token = None
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
858

859
860
861
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
862
                raise ValueError(
863
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
864
                )
865
866
867
868
869
870
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
871

872
873
874
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
875

876
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
877

878
879
880
881
882
883
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
884

885
886
887
888
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
889

890
            logger.info(f"Loaded textual inversion embedding for {token}.")
891

892
        # resize token embeddings and set all new embeddings
893
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
894
        for token_id, embedding in token_ids_and_embeddings:
895
896
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

897
898
899

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
900
901
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
902
    """
903
904
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
905
906

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
907
        """
908
909
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
924
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
925
926
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
927
928
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
Will Berman's avatar
Will Berman committed
929
        self.load_lora_into_text_encoder(
930
            state_dict,
931
            network_alphas=network_alphas,
932
933
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
Will Berman's avatar
Will Berman committed
934
935
936
937
938
939
940
941
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
942
        r"""
943
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
944
945
946
947
948
949
950
951

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
952
953
954
955
956

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
957
958
959
960
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
961
962
963
964
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
965
966
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
967
968
969
970
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
971
972
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
973
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
974
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
975
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
976
977
978
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
979
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
980
981
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
982
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
983
984
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
985
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
986
                The subfolder location of a model file within a larger model repository on the Hub or locally.
987
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
988
989
990
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1004
        unet_config = kwargs.pop("unet_config", None)
1005
1006
1007
1008
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
1009
            use_safetensors = True
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
1024
1025
1026
1027
1028
1029
1030
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
                        )
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1045
                except (IOError, safetensors.SafetensorError) as e:
1046
1047
1048
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
1049
                    model_file = None
1050
                    pass
1051

1052
            if model_file is None:
1053
1054
1055
1056
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin"
                    )
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        network_alphas = None
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = cls._map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1089

1090
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    @classmethod
    def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]

        if len(targeted_files) == 0:
            return

        targeted_files = list(filter(lambda x: "scheduler" not in x and "optimizer" not in x, targeted_files))
        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

Will Berman's avatar
Will Berman committed
1117
    @classmethod
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    def _map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        is_all_unet = all(k.startswith("lora_unet") for k in state_dict)
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
        for layer in state_dict:
            if "text" not in layer:
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
                if "input_blocks" in layer:
                    input_block_ids.add(layer_id)
                elif "middle_block" in layer:
                    middle_block_ids.add(layer_id)
                elif "output_blocks" in layer:
                    output_block_ids.add(layer_id)
                else:
                    raise ValueError("Checkpoint not supported")

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        if is_all_unet and len(state_dict) > 0:
            raise ValueError("At this point all state dict entries have to be converted.")
        else:
            # Remaining is the text encoder state dict.
            for k, v in state_dict.items():
                new_state_dict.update({k: v})

        return new_state_dict

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alphas, unet):
Will Berman's avatar
Will Berman committed
1209
        """
1210
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1211
1212
1213
1214
1215
1216

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1217
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1218
1219
1220
1221
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
1222
1223
1224
1225
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1226

Will Berman's avatar
Will Berman committed
1227
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1228
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1229
            logger.info(f"Loading {cls.unet_name}.")
1230

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
1243
1244
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            warnings.warn(warn_message)
1245

1246
1247
1248
        # load loras into unet
        unet.load_attn_procs(state_dict, network_alphas=network_alphas)

Will Berman's avatar
Will Berman committed
1249
    @classmethod
1250
    def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0):
Will Berman's avatar
Will Berman committed
1251
1252
1253
1254
1255
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1256
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1257
                additional `text_encoder` to distinguish between unet lora layers.
1258
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1259
1260
1261
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1262
1263
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1273
1274
        prefix = cls.text_encoder_name if prefix is None else prefix

1275
        # Safe prefix to check with.
1276
        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1277
            # Load the layers corresponding to text encoder and make necessary adjustments.
1278
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
Will Berman's avatar
Will Berman committed
1279
            text_encoder_lora_state_dict = {
1280
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1281
            }
1282

Will Berman's avatar
Will Berman committed
1283
            if len(text_encoder_lora_state_dict) > 0:
1284
                logger.info(f"Loading {prefix}.")
1285
                rank = {}
Will Berman's avatar
Will Berman committed
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

1324
1325
1326
1327
                for name, _ in text_encoder_attn_modules(text_encoder):
                    rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                    rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

1328
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1329
1330
1331
1332
1333
1334
                if patch_mlp:
                    for name, _ in text_encoder_mlp_modules(text_encoder):
                        rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                        rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                        rank.update({rank_key_fc1: text_encoder_lora_state_dict[rank_key_fc1].shape[1]})
                        rank.update({rank_key_fc2: text_encoder_lora_state_dict[rank_key_fc2].shape[1]})
Will Berman's avatar
Will Berman committed
1335

1336
1337
1338
1339
1340
1341
1342
1343
                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

1344
1345
1346
1347
1348
1349
1350
                cls._modify_text_encoder(
                    text_encoder,
                    lora_scale,
                    network_alphas,
                    rank=rank,
                    patch_mlp=patch_mlp,
                )
Will Berman's avatar
Will Berman committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }
                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1363
1364
1365
1366
1367
1368
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1369
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
                attn_module.q_proj = attn_module.q_proj.regular_linear_layer
                attn_module.k_proj = attn_module.k_proj.regular_linear_layer
                attn_module.v_proj = attn_module.v_proj.regular_linear_layer
                attn_module.out_proj = attn_module.out_proj.regular_linear_layer

1381
1382
1383
1384
1385
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
                mlp_module.fc1 = mlp_module.fc1.regular_linear_layer
                mlp_module.fc2 = mlp_module.fc2.regular_linear_layer

Will Berman's avatar
Will Berman committed
1386
    @classmethod
1387
1388
1389
1390
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1391
        network_alphas=None,
1392
        rank: Union[Dict[str, int], int] = 4,
1393
1394
1395
        dtype=None,
        patch_mlp=False,
    ):
1396
1397
1398
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1399
1400

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1401
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1402

Will Berman's avatar
Will Berman committed
1403
        lora_parameters = []
1404
        network_alphas = {} if network_alphas is None else network_alphas
1405
        is_network_alphas_populated = len(network_alphas) > 0
1406
1407

        for name, attn_module in text_encoder_attn_modules(text_encoder):
1408
1409
1410
1411
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1412

1413
1414
1415
1416
1417
            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

Will Berman's avatar
Will Berman committed
1418
            attn_module.q_proj = PatchedLoraProjection(
1419
                attn_module.q_proj, lora_scale, network_alpha=query_alpha, rank=current_rank, dtype=dtype
1420
            )
Will Berman's avatar
Will Berman committed
1421
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1422

Will Berman's avatar
Will Berman committed
1423
            attn_module.k_proj = PatchedLoraProjection(
1424
                attn_module.k_proj, lora_scale, network_alpha=key_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1425
1426
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1427

Will Berman's avatar
Will Berman committed
1428
            attn_module.v_proj = PatchedLoraProjection(
1429
                attn_module.v_proj, lora_scale, network_alpha=value_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1430
1431
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1432

Will Berman's avatar
Will Berman committed
1433
            attn_module.out_proj = PatchedLoraProjection(
1434
                attn_module.out_proj, lora_scale, network_alpha=out_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1435
1436
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1437

1438
        if patch_mlp:
1439
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1440
1441
1442
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

1443
1444
                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1445

1446
                mlp_module.fc1 = PatchedLoraProjection(
1447
                    mlp_module.fc1, lora_scale, network_alpha=fc1_alpha, rank=current_rank_fc1, dtype=dtype
1448
1449
1450
1451
                )
                lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters())

                mlp_module.fc2 = PatchedLoraProjection(
1452
                    mlp_module.fc2, lora_scale, network_alpha=fc2_alpha, rank=current_rank_fc2, dtype=dtype
1453
1454
1455
                )
                lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters())

1456
1457
1458
1459
1460
        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

Will Berman's avatar
Will Berman committed
1461
        return lora_parameters
1462
1463
1464
1465
1466

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1467
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1468
1469
1470
1471
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
1472
        safe_serialization: bool = True,
1473
1474
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1475
        Save the LoRA parameters corresponding to the UNet and text encoder.
1476
1477
1478

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1479
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1480
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1481
1482
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1483
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1484
                encoder LoRA state dict because it comes from 🤗 Transformers.
1485
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1486
1487
1488
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1489
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1490
1491
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1492
                `DIFFUSERS_SAVE_MODE`.
1493
1494
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1495
1496
1497
        """
        # Create a flat dictionary.
        state_dict = {}
1498
1499

        # Populate the dictionary.
1500
        if unet_lora_layers is not None:
1501
1502
1503
1504
1505
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1506
            state_dict.update(unet_lora_state_dict)
1507

1508
        if text_encoder_lora_layers is not None:
1509
1510
1511
1512
1513
1514
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1515
            text_encoder_lora_state_dict = {
1516
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1517
1518
1519
1520
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1553
1554
1555
1556
1557
1558
1559
1560
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1561

Will Berman's avatar
Will Berman committed
1562
1563
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1564
1565
        unet_state_dict = {}
        te_state_dict = {}
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1582
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1583
1584
1585
1586

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1587
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1588
1589
1590
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1591
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1592

1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
                if "emb" in diffusers_name:
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
1702
            )
1703

1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

1717
        new_state_dict = {**unet_state_dict, **te_state_dict}
1718
        return new_state_dict, network_alphas
1719

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
        from .models.attention_processor import (
            LORA_ATTENTION_PROCESSORS,
            AttnProcessor,
            AttnProcessor2_0,
            LoRAAttnAddedKVProcessor,
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
            XFormersAttnProcessor,
        )

1743
1744
1745
1746
1747
1748
        unet_attention_classes = {type(processor) for _, processor in self.unet.attn_processors.items()}

        if unet_attention_classes.issubset(LORA_ATTENTION_PROCESSORS):
            # Handle attention processors that are a mix of regular attention and AddedKV
            # attention.
            if len(unet_attention_classes) > 1 or LoRAAttnAddedKVProcessor in unet_attention_classes:
1749
                self.unet.set_default_attn_processor()
1750
1751
1752
1753
1754
1755
1756
1757
            else:
                regular_attention_classes = {
                    LoRAAttnProcessor: AttnProcessor,
                    LoRAAttnProcessor2_0: AttnProcessor2_0,
                    LoRAXFormersAttnProcessor: XFormersAttnProcessor,
                }
                [attention_proc_class] = unet_attention_classes
                self.unet.set_attn_processor(regular_attention_classes[attention_proc_class]())
1758

1759
1760
1761
1762
            for _, module in self.unet.named_modules():
                if hasattr(module, "set_lora_layer"):
                    module.set_lora_layer(None)

1763
1764
1765
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

1lint's avatar
1lint committed
1766

Patrick von Platen's avatar
Patrick von Platen committed
1767
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1768
1769
1770
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1771
1772

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1773
1774
1775
1776
1777
1778
1779
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1780
        r"""
1781
1782
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1783
1784
1785
1786

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1787
1788
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1789
1790
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1791
1792
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1793
1794
1795
1796
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1797
1798
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1799
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1800
1801
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1802
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1803
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1804
1805
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
1806
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
1807
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1808
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1809
1810
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1811
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1812
1813
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1814
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1815
1816
1817
1818
1819
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
1820
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
1821
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1822
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1823
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1824
1825
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1826
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1827
1828
1829
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1830
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
1831
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1832
1833
1834
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1835
                Whether to load the safety checker or not.
1836
1837
1838
1839
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
1840
1841
1842
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
1843
1844
1845
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
1846
1847
1848
            original_config_file (`str`):
                Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
                automatically inferred by looking for a key that only exists in SD2.0 models.
1lint's avatar
1lint committed
1849
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1850
1851
1852
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
1853
1854
1855
1856
1857
1858
1859

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
1860
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1861
1862
1863
1864
1865
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
1866
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
1867
1868

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
1869
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1870
1871
1872
1873
1874
1875
1876
1877
1878
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

1879
        original_config_file = kwargs.pop("original_config_file", None)
1lint's avatar
1lint committed
1880
1881
1882
1883
1884
1885
1886
1887
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
1888
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
1889
1890
1891
1892
1893
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
1894
        text_encoder = kwargs.pop("text_encoder", None)
1895
        vae = kwargs.pop("vae", None)
1896
        controlnet = kwargs.pop("controlnet", None)
1897
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
1898
1899
1900

        torch_dtype = kwargs.pop("torch_dtype", None)

1901
        use_safetensors = kwargs.pop("use_safetensors", None)
1lint's avatar
1lint committed
1902
1903
1904
1905
1906

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

1907
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
1908
1909
1910
1911
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
1912
        model_type = None
1lint's avatar
1lint committed
1913

1914
1915
1916
1917
1918
1919
1920
1921
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

1922
            # Model type will be inferred from the checkpoint.
1923
1924
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
1925
        elif "StableDiffusion" in pipeline_name:
1926
1927
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
1928
        elif pipeline_name == "StableUnCLIPPipeline":
1929
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1930
1931
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
1932
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1933
1934
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
1935
            model_type = "PaintByExample"
1lint's avatar
1lint committed
1936
        elif pipeline_name == "LDMTextToImagePipeline":
1937
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
1938
1939
1940
1941
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
1942
1943
1944
        has_valid_url_prefix = False
        valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
        for prefix in valid_url_prefixes:
1lint's avatar
1lint committed
1945
1946
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
1947
                has_valid_url_prefix = True
1lint's avatar
1lint committed
1948
1949
1950
1951

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
1952
1953
1954
1955
1956
            if not has_valid_url_prefix:
                raise ValueError(
                    f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
                )

1lint's avatar
1lint committed
1957
            # get repo_id and (potentially nested) file path of ckpt in repo
1958
1959
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
1993
            text_encoder=text_encoder,
1994
            vae=vae,
1995
            tokenizer=tokenizer,
1996
            original_config_file=original_config_file,
1lint's avatar
1lint committed
1997
1998
1999
2000
2001
2002
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2107
        use_safetensors = kwargs.pop("use_safetensors", None)
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
            vae.to(torch_dtype=torch_dtype)

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2280
        use_safetensors = kwargs.pop("use_safetensors", None)
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet