"src/vscode:/vscode.git/clone" did not exist on "380bfd82c1e737cb4b5732a96a5397d3d9449e74"
loaders.py 73.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import warnings
16
from collections import defaultdict
1lint's avatar
1lint committed
17
from pathlib import Path
18
from typing import Callable, Dict, List, Optional, Union
19
20

import torch
1lint's avatar
1lint committed
21
from huggingface_hub import hf_hub_download
22

23
from .models.attention_processor import (
Will Berman's avatar
Will Berman committed
24
25
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
26
27
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
Will Berman's avatar
Will Berman committed
28
    LoRAAttnAddedKVProcessor,
29
    LoRAAttnProcessor,
30
    LoRAXFormersAttnProcessor,
Will Berman's avatar
Will Berman committed
31
    SlicedAttnAddedKVProcessor,
32
    XFormersAttnProcessor,
33
)
34
35
36
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
37
    TEXT_ENCODER_ATTN_MODULE,
38
39
40
41
42
43
    _get_model_file,
    deprecate,
    is_safetensors_available,
    is_transformers_available,
    logging,
)
44
45
46
47


if is_safetensors_available():
    import safetensors
48

49
50
51
if is_transformers_available():
    from transformers import PreTrainedModel, PreTrainedTokenizer

52
53
54

logger = logging.get_logger(__name__)

55
56
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
57
58

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
59
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
60

61
62
63
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

64
65
66
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

67
68
69
70
71

class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
72
        self.mapping = dict(enumerate(state_dict.keys()))
73
74
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

75
76
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
77

78
79
80
81
82
83
84
85
86
87
88
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

89
90
91
92
93
94
95
96
97
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

98
99
100
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
101
                replace_key = remap_key(key, state_dict)
102
103
104
105
106
107
108
109
110
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
111
112
113
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

114
115
116
117
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be
        defined in
118
        [`cross_attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
119
120
121
122
        and be a `torch.nn.Module` class.

        <Tip warning={true}>

123
        This function is experimental and might change in the future.
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        <Tip>

169
170
        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).
171
172
173
174
175
176
177
178
179
180
181
182

        </Tip>
        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
183
        weight_name = kwargs.pop("weight_name", None)
184
        use_safetensors = kwargs.pop("use_safetensors", None)
185
186
187
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        network_alpha = kwargs.pop("network_alpha", None)
188
189
190
191
192
193
194
195
196
197

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
198
199
200
201
202
203

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

204
        model_file = None
205
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
206
            # Let's first try to load .safetensors weights
207
            if (use_safetensors and weight_name is None) or (
208
209
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
210
211
212
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
213
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
214
215
216
217
218
219
220
221
222
223
224
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
225
226
227
                except IOError as e:
                    if not allow_pickle:
                        raise e
228
229
                    # try loading non-safetensors weights
                    pass
230
231
232
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
233
                    weights_name=weight_name or LORA_WEIGHT_NAME,
234
235
236
237
238
239
240
241
242
243
244
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
245
246
247
248
249
250
251
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())
252
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
253
254

        if is_lora:
255
256
257
258
259
260
261
262
263
264
265
266
            is_new_lora_format = all(
                key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
            )
            if is_new_lora_format:
                # Strip the `"unet"` prefix.
                is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
                if is_text_encoder_present:
                    warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                    warnings.warn(warn_message)
                unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
                state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

267
268
269
270
271
272
273
274
275
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

Will Berman's avatar
Will Berman committed
276
277
278
279
280
281
282
283
284
285
286
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

                if isinstance(
                    attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)
                ):
                    cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1]
                    attn_processor_class = LoRAAttnAddedKVProcessor
                else:
                    cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
287
288
289
290
                    if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)):
                        attn_processor_class = LoRAXFormersAttnProcessor
                    else:
                        attn_processor_class = LoRAAttnProcessor
Will Berman's avatar
Will Berman committed
291
292

                attn_processors[key] = attn_processor_class(
293
294
295
296
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    rank=rank,
                    network_alpha=network_alpha,
297
298
                )
                attn_processors[key].load_state_dict(value_dict)
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
327
        else:
328
329
330
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
331
332
333
334
335
336
337
338
339
340
341

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}

        # set layers
        self.set_attn_processor(attn_processors)

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
342
        weight_name: str = None,
343
        save_function: Callable = None,
344
        safe_serialization: bool = False,
345
        **kwargs,
346
347
    ):
        r"""
Ji soo Kim's avatar
Ji soo Kim committed
348
        Save an attention processor to a directory, so that it can be re-loaded using the
349
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
350
351
352
353
354
355
356
357
358
359
360
361
362

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace `torch.save` by another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
        """
363
364
365
366
367
368
        weight_name = weight_name or deprecate(
            "weights_name",
            "0.18.0",
            "`weights_name` is deprecated, please use `weight_name` instead.",
            take_from=kwargs,
        )
369
370
371
372
373
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
374
375
376
377
378
379
380
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
381
382
383

        os.makedirs(save_directory, exist_ok=True)

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
403

404
        if weight_name is None:
405
            if safe_serialization:
406
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
407
            else:
408
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
409

410
        # Save the model
411
412
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
413
414
415
416
417
418
419


class TextualInversionLoaderMixin:
    r"""
    Mixin class for loading textual inversion tokens and embeddings to the tokenizer and text encoder.
    """

420
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

448
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
465
466
        unique_tokens = set(tokens)
        for token in unique_tokens:
467
468
469
470
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
471
                    replacement += f" {token}_{i}"
472
473
474
475
476
477
478
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
479
        self,
480
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
481
482
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
483
484
485
    ):
        r"""
        Load textual inversion embeddings into the text encoder of stable diffusion pipelines. Both `diffusers` and
486
        `Automatic1111` formats are supported (see example below).
487
488
489

        <Tip warning={true}>

490
        This function is experimental and might change in the future.
491
492
493
494

        </Tip>

        Parameters:
495
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
496
497
498
499
500
501
502
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like
                      `"sd-concepts-library/low-poly-hd-logos-icons"`.
                    - A path to a *directory* containing textual inversion weights, e.g.
                      `./my_text_inversion_directory/`.
503
                    - A path to a *file* containing textual inversion weights, e.g. `./my_text_inversions.pt`.
504
505
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
506
507
508
509
510

                Or a list of those elements.
            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            weight_name (`str`, *optional*):
                Name of a custom weight file. This should be used in two cases:

                    - The saved textual inversion file is in `diffusers` format, but was saved under a specific weight
                      name, such as `text_inv.bin`.
                    - The saved textual inversion file is in the "Automatic1111" form.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.

            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        <Tip>

         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
553
554
555
556

        Example:

        To load a textual inversion embedding vector in `diffusers` format:
1lint's avatar
1lint committed
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

        To load a textual inversion embedding vector in Automatic1111 format, make sure to first download the vector,
        e.g. from [civitAI](https://civitai.com/models/3036?modelVersionId=9857) and then load the vector locally:

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

583
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
584
585
586
587
588
589

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

630
        if not isinstance(pretrained_model_name_or_path, list):
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
684
685
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
686
                        weights_name=weight_name or TEXT_INVERSION_NAME,
687
688
689
690
691
692
693
694
695
696
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
697
698
699
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
700
701

            # 2. Load token and embedding correcly from file
702
            loaded_token = None
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
723

724
725
726
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
727
                raise ValueError(
728
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
729
                )
730
731
732
733
734
735
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
736

737
738
739
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
740

741
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
742

743
744
745
746
747
748
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
749

750
751
752
753
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
754

755
            logger.info(f"Loaded textual inversion embedding for {token}.")
756

757
        # resize token embeddings and set all new embeddings
758
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
759
        for token_id, embedding in token_ids_and_embeddings:
760
761
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

762
763
764
765
766
767
768
769
770
771
772
773

class LoraLoaderMixin:
    r"""
    Utility class for handling the loading LoRA layers into UNet (of class [`UNet2DConditionModel`]) and Text Encoder
    (of class [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel)).

    <Tip warning={true}>

    This function is experimental and might change in the future.

    </Tip>
    """
774
775
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
776
777
778
779
780
781
782
783

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers (such as LoRA) into [`UNet2DConditionModel`] and
        [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel)).

        <Tip warning={true}>

784
785
        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.

            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        <Tip>

        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

910
911
912
913
914
        # Convert kohya-ss Style LoRA attn procs to diffusers attn procs
        network_alpha = None
        if all((k.startswith("lora_te_") or k.startswith("lora_unet_")) for k in state_dict.keys()):
            state_dict, network_alpha = self._convert_kohya_lora_to_diffusers(state_dict)

915
916
917
918
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
919
920
921
        if all(key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in keys):
            # Load the layers corresponding to UNet.
            unet_keys = [k for k in keys if k.startswith(self.unet_name)]
922
            logger.info(f"Loading {self.unet_name}.")
923
924
925
            unet_lora_state_dict = {
                k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys
            }
926
            self.unet.load_attn_procs(unet_lora_state_dict, network_alpha=network_alpha)
927

928
929
            # Load the layers corresponding to text encoder and make necessary adjustments.
            text_encoder_keys = [k for k in keys if k.startswith(self.text_encoder_name)]
930
931
            logger.info(f"Loading {self.text_encoder_name}.")
            text_encoder_lora_state_dict = {
932
                k.replace(f"{self.text_encoder_name}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
933
            }
934
            if len(text_encoder_lora_state_dict) > 0:
935
936
937
                attn_procs_text_encoder = self._load_text_encoder_attn_procs(
                    text_encoder_lora_state_dict, network_alpha=network_alpha
                )
938
                self._modify_text_encoder(attn_procs_text_encoder)
939

940
941
942
                # save lora attn procs of text encoder so that it can be easily retrieved
                self._text_encoder_lora_attn_procs = attn_procs_text_encoder

943
944
945
946
947
948
        # Otherwise, we're dealing with the old format. This means the `state_dict` should only
        # contain the module names of the `unet` as its keys WITHOUT any prefix.
        elif not all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        ):
            self.unet.load_attn_procs(state_dict)
949
950
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            warnings.warn(warn_message)
951

952
953
954
955
956
957
    @property
    def text_encoder_lora_attn_procs(self):
        if hasattr(self, "_text_encoder_lora_attn_procs"):
            return self._text_encoder_lora_attn_procs
        return

958
959
960
961
962
963
964
965
966
967
968
969
970
    def _remove_text_encoder_monkey_patch(self):
        # Loop over the CLIPAttention module of text_encoder
        for name, attn_module in self.text_encoder.named_modules():
            if name.endswith(TEXT_ENCODER_ATTN_MODULE):
                # Loop over the LoRA layers
                for _, text_encoder_attr in self._lora_attn_processor_attr_to_text_encoder_attr.items():
                    # Retrieve the q/k/v/out projection of CLIPAttention
                    module = attn_module.get_submodule(text_encoder_attr)
                    if hasattr(module, "old_forward"):
                        # restore original `forward` to remove monkey-patch
                        module.forward = module.old_forward
                        delattr(module, "old_forward")

971
972
973
974
975
976
977
978
    def _modify_text_encoder(self, attn_processors: Dict[str, LoRAAttnProcessor]):
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.

        Parameters:
            attn_processors: Dict[str, `LoRAAttnProcessor`]:
                A dictionary mapping the module names and their corresponding [`~LoRAAttnProcessor`].
        """
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

        # First, remove any monkey-patch that might have been applied before
        self._remove_text_encoder_monkey_patch()

        # Loop over the CLIPAttention module of text_encoder
        for name, attn_module in self.text_encoder.named_modules():
            if name.endswith(TEXT_ENCODER_ATTN_MODULE):
                # Loop over the LoRA layers
                for attn_proc_attr, text_encoder_attr in self._lora_attn_processor_attr_to_text_encoder_attr.items():
                    # Retrieve the q/k/v/out projection of CLIPAttention and its corresponding LoRA layer.
                    module = attn_module.get_submodule(text_encoder_attr)
                    lora_layer = attn_processors[name].get_submodule(attn_proc_attr)

                    # save old_forward to module that can be used to remove monkey-patch
                    old_forward = module.old_forward = module.forward

                    # create a new scope that locks in the old_forward, lora_layer value for each new_forward function
                    # for more detail, see https://github.com/huggingface/diffusers/pull/3490#issuecomment-1555059060
                    def make_new_forward(old_forward, lora_layer):
                        def new_forward(x):
                            return old_forward(x) + lora_layer(x)

                        return new_forward

                    # Monkey-patch.
                    module.forward = make_new_forward(old_forward, lora_layer)

    @property
    def _lora_attn_processor_attr_to_text_encoder_attr(self):
        return {
            "to_q_lora": "q_proj",
            "to_k_lora": "k_proj",
            "to_v_lora": "v_proj",
            "to_out_lora": "out_proj",
        }
1014

1015
1016
1017
    def _load_text_encoder_attn_procs(
        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs
    ):
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        r"""
        Load pretrained attention processor layers for
        [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

        <Tip warning={true}>

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        Returns:
            `Dict[name, LoRAAttnProcessor]`: Mapping between the module names and their corresponding
            [`LoRAAttnProcessor`].

        <Tip>

        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1090
        network_alpha = kwargs.pop("network_alpha", None)
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())

        if is_lora:
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

                attn_processors[key] = LoRAAttnProcessor(
1168
1169
1170
1171
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    rank=rank,
                    network_alpha=network_alpha,
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
                )
                attn_processors[key].load_state_dict(value_dict)

        else:
            raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")

        # set correct dtype & device
        attn_processors = {
            k: v.to(device=self.device, dtype=self.text_encoder.dtype) for k, v in attn_processors.items()
        }
        return attn_processors

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1188
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and the text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
1201
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1202
                State dict of the LoRA layers corresponding to the UNet. Specifying this helps to make the
1203
1204
1205
                serialization process easier and cleaner. Values can be both LoRA torch.nn.Modules layers or torch
                weights.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module] or `Dict[str, torch.Tensor]`):
1206
1207
                State dict of the LoRA layers corresponding to the `text_encoder`. Since the `text_encoder` comes from
                `transformers`, we cannot rejig it. That is why we have to explicitly pass the text encoder LoRA state
1208
                dict. Values can be both LoRA torch.nn.Modules layers or torch weights.
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace `torch.save` by another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        # Create a flat dictionary.
        state_dict = {}
        if unet_lora_layers is not None:
1236
1237
1238
1239
1240
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1241
            state_dict.update(unet_lora_state_dict)
1242

1243
        if text_encoder_lora_layers is not None:
1244
1245
1246
1247
1248
1249
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1250
            text_encoder_lora_state_dict = {
1251
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1264

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    def _convert_kohya_lora_to_diffusers(self, state_dict):
        unet_state_dict = {}
        te_state_dict = {}
        network_alpha = None

        for key, value in state_dict.items():
            if "lora_down" in key:
                lora_name = key.split(".")[0]
                lora_name_up = lora_name + ".lora_up.weight"
                lora_name_alpha = lora_name + ".alpha"
                if lora_name_alpha in state_dict:
                    alpha = state_dict[lora_name_alpha].item()
                    if network_alpha is None:
                        network_alpha = alpha
                    elif network_alpha != alpha:
                        raise ValueError("Network alpha is not consistent")

                if lora_name.startswith("lora_unet_"):
                    diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
                    diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                    diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                    if "transformer_blocks" in diffusers_name:
                        if "attn1" in diffusers_name or "attn2" in diffusers_name:
                            diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                            diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                            unet_state_dict[diffusers_name] = value
                            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]
                elif lora_name.startswith("lora_te_"):
                    diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("text.model", "text_model")
                    diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                    diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                    if "self_attn" in diffusers_name:
                        te_state_dict[diffusers_name] = value
                        te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]

        unet_state_dict = {f"{UNET_NAME}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {f"{TEXT_ENCODER_NAME}.{module_name}": params for module_name, params in te_state_dict.items()}
        new_state_dict = {**unet_state_dict, **te_state_dict}
        return new_state_dict, network_alpha

1lint's avatar
1lint committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

class FromCkptMixin:
    """This helper class allows to directly load .ckpt stable diffusion file_extension
    into the respective classes."""

    @classmethod
    def from_ckpt(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights saved in the original .ckpt format.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the .ckpt file on the Hub. Should be in the format
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>"`
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
1357
1358
1359
1360
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the pipeline will load the `safetensors` weights if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the pipeline will forcibly load the models from
                `safetensors` weights. If set to `False` the pipeline will *not* use `safetensors`.
1lint's avatar
1lint committed
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
            extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
                checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults
                to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
                inference. Non-EMA weights are usually better to continue fine-tuning.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted. This is necessary when running stable
            image_size (`int`, *optional*, defaults to 512):
                The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
                Base. Use 768 for Stable Diffusion v2.
            prediction_type (`str`, *optional*):
                The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion v1.X and Stable
                Diffusion v2 Base. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to None):
                The number of input channels. If `None`, it will be automatically inferred.
            scheduler_type (`str`, *optional*, defaults to 'pndm'):
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
                Whether to load the safety checker or not. Defaults to `True`.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_ckpt(
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_ckpt("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_ckpt(
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", 512)
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

1433
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
        controlnet = False

        if pipeline_name == "StableDiffusionControlNetPipeline":
            model_type = "FrozenCLIPEmbedder"
            controlnet = True
        elif "StableDiffusion" in pipeline_name:
            model_type = "FrozenCLIPEmbedder"
        elif pipeline_name == "StableUnCLIPPipeline":
            model_type == "FrozenOpenCLIPEmbedder"
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
            model_type == "FrozenOpenCLIPEmbedder"
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
            model_type == "PaintByExample"
        elif pipeline_name == "LDMTextToImagePipeline":
            model_type == "LDMTextToImage"
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
1467
1468
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe