pipeline_utils.py 7.32 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
24
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
25

Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29
30
31
32
33
34

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
35
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
36
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
37
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
38
39
    },
    "transformers": {
anton-l's avatar
anton-l committed
40
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
41
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
42
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
    },
}

46
47
48
49
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
50

Patrick von Platen's avatar
Patrick von Platen committed
51
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
52
53
54

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
55
    def register_modules(self, **kwargs):
56
57
        # import it here to avoid circular import
        from diffusers import pipelines
58

Patrick von Platen's avatar
Patrick von Platen committed
59
        for name, module in kwargs.items():
60
61
            # check if the module is a pipeline module
            is_pipeline_module = hasattr(pipelines, module.__module__.split(".")[-1])
62

Patrick von Platen's avatar
Patrick von Platen committed
63
64
            # retrive library
            library = module.__module__.split(".")[0]
65

66
67
68
69
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
            # so we set the library to module name.
            if library not in LOADABLE_CLASSES or is_pipeline_module:
patil-suraj's avatar
patil-suraj committed
70
71
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
            # retrive class_name
            class_name = module.__class__.__name__

75
76
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
77
            # save model index config
78
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81

            # set models
            setattr(self, name, module)
82

Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
86
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
87
        model_index_dict.pop("_class_name")
88
        model_index_dict.pop("_diffusers_version")
89
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
90

anton-l's avatar
anton-l committed
91
92
93
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
94
95

            save_method_name = None
anton-l's avatar
anton-l committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
113
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
114
        Add docstrings
115
116
117
118
119
120
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
Patrick von Platen's avatar
Patrick von Platen committed
121

patil-suraj's avatar
patil-suraj committed
122
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
123
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
124
        if not os.path.isdir(pretrained_model_name_or_path):
125
126
127
128
129
130
131
132
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
133
134
        else:
            cached_folder = pretrained_model_name_or_path
135

patil-suraj's avatar
patil-suraj committed
136
        config_dict = cls.get_config_dict(cached_folder)
137

Patrick von Platen's avatar
Patrick von Platen committed
138
        # 2. Load the pipeline class, if using custom module then load it from the hub
139
140
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
141
142
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

146
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
147
148

        init_kwargs = {}
149

150
151
        # import it here to avoid circular import
        from diffusers import pipelines
152

Patrick von Platen's avatar
Patrick von Platen committed
153
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
154
        for name, (library_name, class_name) in init_dict.items():
155
156
157
158
159
160
            is_pipeline_module = hasattr(pipelines, library_name)
            # if the model is in a pipeline module, then we load it from the pipeline
            if is_pipeline_module:
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
161
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
162
            else:
patil-suraj's avatar
patil-suraj committed
163
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
164
165
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
166
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
167
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
168

169
170
171
172
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
176
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
177
            if os.path.isdir(os.path.join(cached_folder, name)):
178
179
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
180
                # else load from the root directory
181
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
182

183
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
184

patil-suraj's avatar
patil-suraj committed
185
        # 5. Instantiate the pipeline
186
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
187
        return model