"build_tools/vscode:/vscode.git/clone" did not exist on "2a7164681d35dcdfe0b8d516ed5ab37d18c38127"
test_pipelines.py 18.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import numpy as np
import torch

import PIL
23
from datasets import load_dataset
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from diffusers import (
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
38
39
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
40
41
42
43
44
45
46
47
48
49
    StableDiffusionPipeline,
    UNet2DModel,
)
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.testing_utils import slow, torch_device


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
    ddpm(output_type="numpy")["sample"]
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
    ddpm(output_type="numpy")["sample"]
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
88
        ddpm.to(torch_device)
89
90
91
92

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
93
            new_ddpm.to(torch_device)
94
95
96
97
98
99
100
101
102
103
104
105
106

        generator = torch.manual_seed(0)

        image = ddpm(generator=generator, output_type="numpy")["sample"]
        generator = generator.manual_seed(0)
        new_image = new_ddpm(generator=generator, output_type="numpy")["sample"]

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

107
        scheduler = DDPMScheduler(num_train_timesteps=10)
108

109
110
111
112
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
113
114
115
116
117
118
119
120
121
122
123
124
125

        generator = torch.manual_seed(0)

        image = ddpm(generator=generator, output_type="numpy")["sample"]
        generator = generator.manual_seed(0)
        new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"]

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

126
127
        scheduler = DDPMScheduler(num_train_timesteps=10)

128
129
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
130
131
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
132

133
134
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        generator = torch.manual_seed(0)

        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy")["sample"]
        generator = generator.manual_seed(0)
        new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"]

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
149
        pipe.to(torch_device)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        generator = torch.manual_seed(0)
        images = pipe(generator=generator, output_type="numpy")["sample"]
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

        images = pipe(generator=generator, output_type="pil")["sample"]
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
        images = pipe(generator=generator)["sample"]
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
175
        ddpm.to(torch_device)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
194
        ddpm.to(torch_device)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler(tensor_format="pt")

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
213
        ddim.to(torch_device)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

        generator = torch.manual_seed(0)
        image = ddim(generator=generator, eta=0.0, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
232
        pndm.to(torch_device)
233
234
235
236
237
238
239
240
241
242
243
244
        generator = torch.manual_seed(0)
        image = pndm(generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
245
        ldm.to(torch_device)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
262
        ldm.to(torch_device)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1").to(torch_device)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1").to(torch_device)

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8354, 0.83, 0.866, 0.838, 0.8315, 0.867, 0.836, 0.8584, 0.869])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
330
        sde_ve.to(torch_device)
331
332
333
334
335
336
337
338
339
340
341
342
343
344

        torch.manual_seed(0)
        image = sde_ve(num_inference_steps=300, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

        expected_slice = np.array([0.64363, 0.5868, 0.3031, 0.2284, 0.7409, 0.3216, 0.25643, 0.6557, 0.2633])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
345
        ldm.to(torch_device)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
365
        ddpm.to(torch_device)
366
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
367
        ddim.to(torch_device)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy")["sample"]

        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")["sample"]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
387
388
        ddpm.to(torch_device)

389
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
390
        ddim.to(torch_device)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy")["sample"]

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
410
        pipe.to(torch_device)
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.26815, 0.1581, 0.2658, 0.23248, 0.1550, 0.2539, 0.1131, 0.1024, 0.0837])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

        init_image = ds[1]["image"].resize((768, 512))
        output_image = ds[0]["image"].resize((768, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, use_auth_token=True)
        pipe.to(torch_device)

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)[
            "sample"
        ][0]

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_in_paint_pipeline(self):
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

        init_image = ds[2]["image"].resize((768, 512))
        mask_image = ds[3]["image"].resize((768, 512))
        output_image = ds[4]["image"].resize((768, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, use_auth_token=True)
        pipe.to(torch_device)

        prompt = "A red cat sitting on a parking bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
        )["sample"][0]

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-3