attention.py 13.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional
15
16

import torch
Patrick von Platen's avatar
Patrick von Platen committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import maybe_allow_in_graph
21
from .activations import get_activation
Patrick von Platen's avatar
Patrick von Platen committed
22
from .attention_processor import Attention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
25


26
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
27
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
28
29
30
31
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
32
33
34
35
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
36
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
37
38
39
40
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
Will Berman's avatar
Will Berman committed
41
42
43
44
45
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
46
47
48
49
50
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
51
52
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
53
        dropout=0.0,
Will Berman's avatar
Will Berman committed
54
55
56
57
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
58
        only_cross_attention: bool = False,
59
        double_self_attention: bool = False,
60
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
61
62
63
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
64
    ):
Patrick von Platen's avatar
Patrick von Platen committed
65
        super().__init__()
66
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
67
68
69
70
71
72
73
74
75

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
76

77
        # Define 3 blocks. Each block has its own normalization layer.
78
        # 1. Self-Attn
79
80
81
82
83
84
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
85
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
86
87
88
89
90
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
91
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
92
            upcast_attention=upcast_attention,
93
94
        )

95
        # 2. Cross-Attn
96
        if cross_attention_dim is not None or double_self_attention:
97
98
99
100
101
102
103
104
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
Patrick von Platen's avatar
Patrick von Platen committed
105
            self.attn2 = Attention(
106
                query_dim=dim,
107
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
108
109
110
111
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
112
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
113
            )  # is self-attn if encoder_hidden_states is none
114
115
        else:
            self.norm2 = None
116
            self.attn2 = None
117
118

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
119
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
120
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Patrick von Platen's avatar
Patrick von Platen committed
121

122
123
    def forward(
        self,
124
125
126
127
128
129
130
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
131
    ):
132
133
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 1. Self-Attention
Kashif Rasul's avatar
Kashif Rasul committed
134
135
136
137
138
139
140
141
142
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

143
144
145
146
147
148
149
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
150
151
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
152
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
153

154
        # 2. Cross-Attention
155
156
157
158
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
Kashif Rasul's avatar
Kashif Rasul committed
159

160
161
162
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
163
                attention_mask=encoder_attention_mask,
164
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
165
            )
166
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
167
168

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
169
170
171
172
173
174
175
176
177
178
179
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
180

181
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
182
183
184


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
185
186
187
188
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
189
190
191
192
193
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
194
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
195
196
197
    """

    def __init__(
Will Berman's avatar
Will Berman committed
198
199
200
201
202
203
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
204
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
205
    ):
Patrick von Platen's avatar
Patrick von Platen committed
206
207
        super().__init__()
        inner_dim = int(dim * mult)
208
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
209

210
211
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
212
213
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
214
215
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
216
        elif activation_fn == "geglu-approximate":
217
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
218
219

        self.net = nn.ModuleList([])
220
        # project in
221
        self.net.append(act_fn)
222
223
224
225
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
226
227
228
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
229

230
    def forward(self, hidden_states):
231
232
233
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
234

Patrick von Platen's avatar
Patrick von Platen committed
235

236
237
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
238
    GELU activation function with tanh approximation support with `approximate="tanh"`.
239
240
    """

Kashif Rasul's avatar
Kashif Rasul committed
241
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
242
243
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
244
        self.approximate = approximate
245
246
247

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
248
            return F.gelu(gate, approximate=self.approximate)
249
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
250
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
251
252
253
254
255
256
257

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
258
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
259
260
261
262
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
263
264
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
265
266
267
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
268
269
270
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

271
272
273
274
275
276
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

277
278
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
279
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
336
337
338
339
340
341
342
343
344
345
346
347
348


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps
349
350
351
352
353

        if act_fn is None:
            self.act = None
        else:
            self.act = get_activation(act_fn)
354
355
356
357
358
359
360
361
362
363
364
365
366

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x