attention.py 23.9 KB
Newer Older
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
3
4

import torch
Patrick von Platen's avatar
Patrick von Platen committed
5
import torch.nn.functional as F
6
7
8
from torch import nn


Patrick von Platen's avatar
Patrick von Platen committed
9
# unet_grad_tts.py
Patrick von Platen's avatar
Patrick von Platen committed
10
# TODO(Patrick) - weird linear attention layer. Check with: https://github.com/huawei-noah/Speech-Backbones/issues/15
Patrick von Platen's avatar
Patrick von Platen committed
11
12
13
14
15
16
17
18
19
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

20
    def forward(self, x, encoder_states=None):
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

34

Patrick von Platen's avatar
Patrick von Platen committed
35
# the main attention block that is used for all models
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
48
        num_head_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
49
        num_groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
50
        encoder_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
51
        overwrite_qkv=False,
Patrick von Platen's avatar
Patrick von Platen committed
52
53
        overwrite_linear=False,
        rescale_output_factor=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
54
        eps=1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
    ):
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
58
        if num_head_channels is None:
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
63
64
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
65

Patrick von Platen's avatar
Patrick von Platen committed
66
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
67
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.n_heads = self.num_heads
Patrick von Platen's avatar
Patrick von Platen committed
69
        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
70
71

        if encoder_channels is not None:
Patrick von Platen's avatar
Patrick von Platen committed
72
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)
Patrick von Platen's avatar
Patrick von Platen committed
73

74
        self.proj = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
75

Patrick von Platen's avatar
Patrick von Platen committed
76
        self.overwrite_qkv = overwrite_qkv
Anton Lozhkov's avatar
Anton Lozhkov committed
77
78
        self.overwrite_linear = overwrite_linear

Patrick von Platen's avatar
Patrick von Platen committed
79
80
        if overwrite_qkv:
            in_channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
81
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
            self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
Anton Lozhkov's avatar
Anton Lozhkov committed
86
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90
91
92
93
            num_groups = min(channels // 4, 32)
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
            self.NIN_0 = NIN(channels, channels)
            self.NIN_1 = NIN(channels, channels)
            self.NIN_2 = NIN(channels, channels)
            self.NIN_3 = NIN(channels, channels)

Patrick von Platen's avatar
Patrick von Platen committed
94
            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)
Anton Lozhkov's avatar
Anton Lozhkov committed
95
96
        else:
            self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
97
            self.set_weights(self)
Patrick von Platen's avatar
Patrick von Platen committed
98

Patrick von Platen's avatar
Patrick von Platen committed
99
        self.is_overwritten = False
100

Patrick von Platen's avatar
Patrick von Platen committed
101
102
    def set_weights(self, module):
        if self.overwrite_qkv:
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
            qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[
                :, :, :, 0
            ]
Patrick von Platen's avatar
Patrick von Platen committed
106
            qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
107

Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
            self.qkv.weight.data = qkv_weight
            self.qkv.bias.data = qkv_bias

Patrick von Platen's avatar
Patrick von Platen committed
111
            proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
112
113
            proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
            proj_out.bias.data = module.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
114

115
            self.proj = proj_out
Patrick von Platen's avatar
Patrick von Platen committed
116
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
            self.qkv.weight.data = torch.concat(
                [self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0
            )[:, :, None]
Patrick von Platen's avatar
Patrick von Platen committed
120
121
            self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0)

122
123
            self.proj.weight.data = self.NIN_3.W.data.T[:, :, None]
            self.proj.bias.data = self.NIN_3.b.data
Patrick von Platen's avatar
Patrick von Platen committed
124

Patrick von Platen's avatar
Patrick von Platen committed
125
126
            self.norm.weight.data = self.GroupNorm_0.weight.data
            self.norm.bias.data = self.GroupNorm_0.bias.data
Anton Lozhkov's avatar
Anton Lozhkov committed
127
        else:
128
129
            self.proj.weight.data = self.proj_out.weight.data
            self.proj.bias.data = self.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
130

Patrick von Platen's avatar
Patrick von Platen committed
131
    def forward(self, x, encoder_out=None):
132
        if not self.is_overwritten and (self.overwrite_qkv or self.overwrite_linear):
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
            self.set_weights(self)
            self.is_overwritten = True

        b, c, *spatial = x.shape
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        hid_states = self.norm(x).view(b, c, -1)

        qkv = self.qkv(hid_states)
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)

        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        a = torch.einsum("bts,bcs->bct", weight, v)
        h = a.reshape(bs, -1, length)

        h = self.proj(h)
        h = h.reshape(b, c, *spatial)

        result = x + h

        result = result / self.rescale_output_factor

        return result


Patrick von Platen's avatar
Patrick von Platen committed
169
class AttentionBlockNew_2(nn.Module):
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_head_channels=1,
        num_groups=32,
        encoder_channels=None,
        rescale_output_factor=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
184
        eps=1e-5,
185
186
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
187
188
        self.channels = channels
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)
189
190
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
        self.n_heads = channels // num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
191
        self.num_head_size = num_head_channels
192
193
194
195
196
197
198
        self.rescale_output_factor = rescale_output_factor

        if encoder_channels is not None:
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)

        self.proj = zero_module(nn.Conv1d(channels, channels, 1))

Patrick von Platen's avatar
Patrick von Platen committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        # ------------------------- new -----------------------
        num_heads = self.n_heads
        self.channels = channels
        if num_head_channels is None:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels

        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
        self.proj_attn = zero_module(nn.Linear(channels, channels, 1))
        # ------------------------- new -----------------------

221
222
223
224
225
226
227
228
229
230
    def set_weight(self, attn_layer):
        self.norm.weight.data = attn_layer.norm.weight.data
        self.norm.bias.data = attn_layer.norm.bias.data

        self.qkv.weight.data = attn_layer.qkv.weight.data
        self.qkv.bias.data = attn_layer.qkv.bias.data

        self.proj.weight.data = attn_layer.proj.weight.data
        self.proj.bias.data = attn_layer.proj.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        if hasattr(attn_layer, "q"):
            module = attn_layer
            qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[
                :, :, :, 0
            ]
            qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0)

            self.qkv.weight.data = qkv_weight
            self.qkv.bias.data = qkv_bias

            proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1))
            proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
            proj_out.bias.data = module.proj_out.bias.data

            self.proj = proj_out

        self.set_weights_2(attn_layer)

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
        new_projection_shape = projection.size()[:-1] + (self.n_heads, self.num_head_size)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def set_weights_2(self, attn_layer):
        self.group_norm.weight.data = attn_layer.norm.weight.data
        self.group_norm.bias.data = attn_layer.norm.bias.data

        qkv_weight = attn_layer.qkv.weight.data.reshape(self.n_heads, 3 * self.channels // self.n_heads, self.channels)
        qkv_bias = attn_layer.qkv.bias.data.reshape(self.n_heads, 3 * self.channels // self.n_heads)

        q_w, k_w, v_w = qkv_weight.split(self.channels // self.n_heads, dim=1)
        q_b, k_b, v_b = qkv_bias.split(self.channels // self.n_heads, dim=1)

        self.query.weight.data = q_w.reshape(-1, self.channels)
        self.key.weight.data = k_w.reshape(-1, self.channels)
        self.value.weight.data = v_w.reshape(-1, self.channels)

        self.query.bias.data = q_b.reshape(-1)
        self.key.bias.data = k_b.reshape(-1)
        self.value.bias.data = v_b.reshape(-1)

        self.proj_attn.weight.data = attn_layer.proj.weight.data[:, :, 0]
        self.proj_attn.bias.data = attn_layer.proj.bias.data

    def forward_2(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.channels // self.n_heads)
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # compute attention output
        context_states = torch.matmul(attention_probs, value_states)

        context_states = context_states.permute(0, 2, 1, 3).contiguous()
        new_context_states_shape = context_states.size()[:-2] + (self.channels,)
        context_states = context_states.view(new_context_states_shape)

        # compute next hidden_states
        hidden_states = self.proj_attn(context_states)
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

314
315
    def forward(self, x, encoder_out=None):
        b, c, *spatial = x.shape
Patrick von Platen's avatar
Patrick von Platen committed
316
        hid_states = self.norm(x).view(b, c, -1)
Patrick von Platen's avatar
Patrick von Platen committed
317

Patrick von Platen's avatar
Patrick von Platen committed
318
        qkv = self.qkv(hid_states)
Patrick von Platen's avatar
Patrick von Platen committed
319
320
321
322
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
323
324
325

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
Patrick von Platen's avatar
Patrick von Platen committed
326
327
328
329
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
Patrick von Platen's avatar
Patrick von Platen committed
330

Patrick von Platen's avatar
Patrick von Platen committed
331
332
333
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
334

Patrick von Platen's avatar
Patrick von Platen committed
335
        a = torch.einsum("bts,bcs->bct", weight, v)
Patrick von Platen's avatar
Patrick von Platen committed
336
337
        h = a.reshape(bs, -1, length)

338
        h = self.proj(h)
Patrick von Platen's avatar
Patrick von Platen committed
339
        h = h.reshape(b, c, *spatial)
Patrick von Platen's avatar
Patrick von Platen committed
340

Patrick von Platen's avatar
Patrick von Platen committed
341
342
        result = x + h
        result = result / self.rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
343

Patrick von Platen's avatar
Patrick von Platen committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        result_2 = self.forward_2(x)

        print((result - result_2).abs().sum())

        return result_2


class AttentionBlockNew(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    Uses three q, k, v linear layers to compute attention
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=None,
        num_groups=32,
        rescale_output_factor=1.0,
        eps=1e-5,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels is None:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels

        self.num_head_size = num_head_channels
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
        self.proj_attn = zero_module(nn.Linear(channels, channels, 1))

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
        new_projection_shape = projection.size()[:-1] + (self.num_heads, self.num_head_size)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.channels // self.num_heads)
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # compute attention output
        context_states = torch.matmul(attention_probs, value_states)

        context_states = context_states.permute(0, 2, 1, 3).contiguous()
        new_context_states_shape = context_states.size()[:-2] + (self.channels,)
        context_states = context_states.view(new_context_states_shape)

        # compute next hidden_states
        hidden_states = self.proj_attn(context_states)
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

    def set_weight(self, attn_layer):
        self.group_norm.weight.data = attn_layer.norm.weight.data
        self.group_norm.bias.data = attn_layer.norm.bias.data

        qkv_weight = attn_layer.qkv.weight.data.reshape(
            self.num_heads, 3 * self.channels // self.num_heads, self.channels
        )
        qkv_bias = attn_layer.qkv.bias.data.reshape(self.num_heads, 3 * self.channels // self.num_heads)

        q_w, k_w, v_w = qkv_weight.split(self.channels // self.num_heads, dim=1)
        q_b, k_b, v_b = qkv_bias.split(self.channels // self.num_heads, dim=1)

        self.query.weight.data = q_w.reshape(-1, self.channels)
        self.key.weight.data = k_w.reshape(-1, self.channels)
        self.value.weight.data = v_w.reshape(-1, self.channels)

        self.query.bias.data = q_b.reshape(-1)
        self.key.bias.data = k_b.reshape(-1)
        self.value.bias.data = v_b.reshape(-1)

        self.proj_attn.weight.data = attn_layer.proj.weight.data[:, :, 0]
        self.proj_attn.bias.data = attn_layer.proj.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
455
456


Patrick von Platen's avatar
Patrick von Platen committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
    """

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
        x = self.proj_out(x)
        return x + x_in


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, x, context=None, mask=None):
        batch_size, sequence_length, dim = x.shape

        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)

        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

        if exists(mask):
            mask = mask.reshape(batch_size, -1)
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = mask[:, None, :].repeat(h, 1, 1)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = torch.einsum("b i j, b j d -> b i d", attn, v)
        out = self.reshape_batch_dim_to_heads(out)
        return self.to_out(out)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

    def forward(self, x):
        return self.net(x)
Patrick von Platen's avatar
Patrick von Platen committed
586

Patrick von Platen's avatar
Patrick von Platen committed
587

Patrick von Platen's avatar
Patrick von Platen committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# TODO(Patrick) - this can and should be removed
def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


# TODO(Patrick) - remove once all weights have been converted -> not needed anymore then
class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
        super().__init__()
        self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
Patrick von Platen's avatar
Patrick von Platen committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)