"server/text_generation_server/models/phi.py" did not exist on "daa1d81d5ec4ef9bc59a4d6e850687b788732c90"
test_modeling_common.py 101 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
Aryan's avatar
Aryan committed
17
import gc
18
import glob
19
import inspect
20
21
import json
import os
Aryan's avatar
Aryan committed
22
import re
23
import tempfile
24
import traceback
25
import unittest
26
import unittest.mock as mock
27
import uuid
28
import warnings
29
30
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
31
32

import numpy as np
33
import pytest
34
import requests_mock
35
import safetensors.torch
36
import torch
37
import torch.nn as nn
YiYi Xu's avatar
YiYi Xu committed
38
from accelerate.utils.modeling import _get_proper_dtype, compute_module_sizes, dtype_byte_size
39
from huggingface_hub import ModelCard, delete_repo, snapshot_download
40
from huggingface_hub.utils import is_jinja_available
41
from parameterized import parameterized
42
from requests.exceptions import HTTPError
43

44
from diffusers.models import SD3Transformer2DModel, UNet2DConditionModel
45
46
47
48
49
50
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
hlky's avatar
hlky committed
51
from diffusers.models.auto_model import AutoModel
52
from diffusers.training_utils import EMAModel
53
54
55
from diffusers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    WEIGHTS_INDEX_NAME,
56
    is_peft_available,
57
58
59
60
    is_torch_npu_available,
    is_xformers_available,
    logging,
)
61
from diffusers.utils.hub_utils import _add_variant
62
63
from diffusers.utils.testing_utils import (
    CaptureLogger,
64
    _check_safetensors_serialization,
65
    backend_empty_cache,
66
67
68
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    backend_synchronize,
69
    check_if_dicts_are_equal,
70
    get_python_version,
71
    is_torch_compile,
Aryan's avatar
Aryan committed
72
    numpy_cosine_similarity_distance,
73
74
    require_peft_backend,
    require_peft_version_greater,
75
    require_torch_2,
76
    require_torch_accelerator,
Arsalan's avatar
Arsalan committed
77
    require_torch_accelerator_with_training,
Sayak Paul's avatar
Sayak Paul committed
78
    require_torch_gpu,
79
    require_torch_multi_accelerator,
80
    require_torch_version_greater,
81
    run_test_in_subprocess,
82
    slow,
83
    torch_all_close,
Dhruv Nair's avatar
Dhruv Nair committed
84
    torch_device,
85
)
86
from diffusers.utils.torch_utils import get_torch_cuda_device_capability
87
88

from ..others.test_utils import TOKEN, USER, is_staging_test
89
90


91
92
93
94
if is_peft_available():
    from peft.tuners.tuners_utils import BaseTunerLayer


95
96
97
98
99
100
101
102
103
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


104
105
106
107
108
109
110
111
112
113
def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


114
115
116
117
118
119
120
121
122
123
124
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
125
            model.save_pretrained(tmpdirname, safe_serialization=False)
126
127
128
129
130
131
132
133
134
135
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
136
137


138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def named_persistent_module_tensors(
    module: nn.Module,
    recurse: bool = False,
):
    """
    A helper function that gathers all the tensors (parameters + persistent buffers) of a given module.

    Args:
        module (`torch.nn.Module`):
            The module we want the tensors on.
        recurse (`bool`, *optional`, defaults to `False`):
            Whether or not to go look in every submodule or just return the direct parameters and buffers.
    """
    yield from module.named_parameters(recurse=recurse)

    for named_buffer in module.named_buffers(recurse=recurse):
        name, _ = named_buffer
        # Get parent by splitting on dots and traversing the model
        parent = module
        if "." in name:
            parent_name = name.rsplit(".", 1)[0]
            for part in parent_name.split("."):
                parent = getattr(parent, part)
            name = name.split(".")[-1]
        if name not in parent._non_persistent_buffers_set:
            yield named_buffer


def compute_module_persistent_sizes(
    model: nn.Module,
    dtype: Optional[Union[str, torch.device]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
    """
    Compute the size of each submodule of a given model (parameters + persistent buffers).
    """
    if dtype is not None:
        dtype = _get_proper_dtype(dtype)
        dtype_size = dtype_byte_size(dtype)
    if special_dtypes is not None:
        special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
        special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
    module_sizes = defaultdict(int)

    module_list = []

    module_list = named_persistent_module_tensors(model, recurse=True)

    for name, tensor in module_list:
        if special_dtypes is not None and name in special_dtypes:
            size = tensor.numel() * special_dtypes_size[name]
        elif dtype is None:
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
            # According to the code in set_module_tensor_to_device, these types won't be converted
            # so use their original size here
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        else:
            size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
        name_parts = name.split(".")
        for idx in range(len(name_parts) + 1):
            module_sizes[".".join(name_parts[:idx])] += size

    return module_sizes


Aryan's avatar
Aryan committed
204
205
206
207
208
209
210
211
212
213
def cast_maybe_tensor_dtype(maybe_tensor, current_dtype, target_dtype):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(target_dtype) if maybe_tensor.dtype == current_dtype else maybe_tensor
    if isinstance(maybe_tensor, dict):
        return {k: cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for k, v in maybe_tensor.items()}
    if isinstance(maybe_tensor, list):
        return [cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for v in maybe_tensor]
    return maybe_tensor


214
class ModelUtilsTest(unittest.TestCase):
215
216
217
    def tearDown(self):
        super().tearDown()

218
219
    def test_missing_key_loading_warning_message(self):
        with self.assertLogs("diffusers.models.modeling_utils", level="WARNING") as logs:
220
221
222
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
223
        assert "conv_out.bias" in " ".join(logs.output)
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
        ]
    )
    def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
        def load_model(path):
            kwargs = {"variant": "fp16"}
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(path, **kwargs)

        with self.assertWarns(FutureWarning) as warning:
            if use_local:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = snapshot_download(repo_id=repo_id)
                    _ = load_model(tmpdirname)
            else:
                _ = load_model(repo_id)

        warning_message = str(warning.warnings[0].message)
        self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_message)

    # Local tests are already covered down below.
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
        ]
    )
    def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
        def load_model():
            kwargs = {}
            if variant:
                kwargs["variant"] = variant
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)

        assert load_model()

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

295
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
296
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
297
    def test_one_request_upon_cached(self):
298
        use_safetensors = False
299
300
301
302

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
303
304
305
306
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
307
308
309
                )

            download_requests = [r.method for r in m.request_history]
310
311
312
            assert download_requests.count("HEAD") == 3, (
                "3 HEAD requests one for config, one for model, and one for shard index file."
            )
313
314
315
316
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
317
318
319
320
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
321
322
323
                )

            cache_requests = [r.method for r in m.request_history]
324
325
326
            assert "HEAD" == cache_requests[0] and len(cache_requests) == 2, (
                "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
            )
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

352
    @require_torch_accelerator
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules

        for torch_dtype in [torch.bfloat16, torch.float16]:
            SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

            model = SD3Transformer2DModel.from_pretrained(
                "hf-internal-testing/tiny-sd3-pipe", subfolder="transformer", torch_dtype=torch_dtype
            ).to(torch_device)

            for name, module in model.named_modules():
                if isinstance(module, torch.nn.Linear):
                    if name in model._keep_in_fp32_modules:
                        self.assertTrue(module.weight.dtype == torch.float32)
                    else:
                        self.assertTrue(module.weight.dtype == torch_dtype)

        def get_dummy_inputs():
            batch_size = 2
            num_channels = 4
            height = width = embedding_dim = 32
            pooled_embedding_dim = embedding_dim * 2
            sequence_length = 154

            hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
            pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
            timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "timestep": timestep,
            }

        # test if inference works.
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch_dtype):
            input_dict_for_transformer = get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
class UNetTesterMixin:
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


427
class ModelTesterMixin:
428
429
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
430
    forward_requires_fresh_args = False
431
    model_split_percents = [0.5, 0.7, 0.9]
432
    uses_custom_attn_processor = False
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
447

448
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
449
450
451
452
453
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
454

455
456
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
457
458
459
460
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
461
            model.save_pretrained(tmpdirname, safe_serialization=False)
462
            new_model = self.model_class.from_pretrained(tmpdirname)
463
464
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
465
466
467
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
468
469
470
471
472
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

473
            if isinstance(image, dict):
474
                image = image.to_tuple()[0]
475

Will Berman's avatar
Will Berman committed
476
477
478
479
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
480
481

            if isinstance(new_image, dict):
482
                new_image = new_image.to_tuple()[0]
483

484
485
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
577
578
579
580
581
582
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
583
584
585
586
587
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
588
589
590
591
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
592
593
594
595
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
596
597
598
599
600
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
601
602
603
604
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
605
606
607
608

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
609
610
611
612
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
613

614
615
616
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
617
618
619
620
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
621
622
623

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
624
        assert torch.allclose(output, output_2, atol=self.base_precision)
625
626
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
627

628
    @require_torch_accelerator
629
    def test_set_attn_processor_for_determinism(self):
630
631
632
        if self.uses_custom_attn_processor:
            return

633
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
634
635
636
637
638
639
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

640
641
642
643
644
645
646
647
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
648
649
650
651
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
652
653
654
655

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
656
657
658
659
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
660
661
662
663

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
664
665
666
667
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
668
669
670
671

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
672
673
674
675
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
676
677
678
679
680
681
682
683

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

684
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
685
686
687
688
689
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
690

691
692
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
693

694
695
696
697
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
698
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
699
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
700
701
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
702
703
704
705
706
707
708
709
710
711
712

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
713
714
715
716
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
717
            if isinstance(image, dict):
718
                image = image.to_tuple()[0]
719

Will Berman's avatar
Will Berman committed
720
721
722
723
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
724
725

            if isinstance(new_image, dict):
726
                new_image = new_image.to_tuple()[0]
727

728
729
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
730

731
    @is_torch_compile
732
    @require_torch_2
733
734
735
736
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
737
    def test_from_save_pretrained_dynamo(self):
738
739
740
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
741

742
743
744
745
746
747
748
749
750
751
752
753
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
754
                model.save_pretrained(tmpdirname, safe_serialization=False)
755
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
756
                assert new_model.dtype == dtype
757
758
759
760
761
762
763
764
                if (
                    hasattr(self.model_class, "_keep_in_fp32_modules")
                    and self.model_class._keep_in_fp32_modules is None
                ):
                    new_model = self.model_class.from_pretrained(
                        tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype
                    )
                    assert new_model.dtype == dtype
765

766
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
767
768
769
770
771
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
772
773
        model.to(torch_device)
        model.eval()
774

775
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
776
777
778
779
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
780
            if isinstance(first, dict):
781
                first = first.to_tuple()[0]
782

Will Berman's avatar
Will Berman committed
783
784
785
786
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
787
            if isinstance(second, dict):
788
                second = second.to_tuple()[0]
789
790
791
792
793
794

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
795
        self.assertLessEqual(max_diff, expected_max_diff)
796

797
    def test_output(self, expected_output_shape=None):
798
799
800
801
802
803
804
805
806
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
807
                output = output.to_tuple()[0]
808
809

        self.assertIsNotNone(output)
810

811
812
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
813
814
815
816
817
818

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
819

820
    def test_model_from_pretrained(self):
821
822
823
824
825
826
827
828
829
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
830
            model.save_pretrained(tmpdirname, safe_serialization=False)
831
            new_model = self.model_class.from_pretrained(tmpdirname)
832
833
834
            new_model.to(torch_device)
            new_model.eval()

835
        # check if all parameters shape are the same
836
837
838
839
840
841
842
843
844
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
845
                output_1 = output_1.to_tuple()[0]
846
847
848
849

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
850
                output_2 = output_2.to_tuple()[0]
851
852
853

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
854
    @require_torch_accelerator_with_training
855
856
857
858
859
860
861
862
863
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
864
            output = output.to_tuple()[0]
865

866
867
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
868
869
870
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
871
    @require_torch_accelerator_with_training
872
873
874
875
876
877
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
878
        ema_model = EMAModel(model.parameters())
879
880
881
882

        output = model(**inputs_dict)

        if isinstance(output, dict):
883
            output = output.to_tuple()[0]
884

885
886
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
887
888
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
889
        ema_model.step(model.parameters())
890

891
    def test_outputs_equivalence(self):
892
        def set_nan_tensor_to_zero(t):
893
894
895
896
897
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
898
            t[t != t] = 0
899
            return t.to(device)
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
923
924
925
926
927
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
928
929
930
931

        model.to(torch_device)
        model.eval()

932
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
933
934
935
936
937
938
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
939
940

        recursive_check(outputs_tuple, outputs_dict)
941

Arsalan's avatar
Arsalan committed
942
    @require_torch_accelerator_with_training
943
    def test_enable_disable_gradient_checkpointing(self):
944
        # Skip test if model does not support gradient checkpointing
945
        if not self.model_class._supports_gradient_checkpointing:
946
            pytest.skip("Gradient checkpointing is not supported.")
947
948
949
950
951
952
953
954
955
956
957
958
959
960

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
961

962
    @require_torch_accelerator_with_training
963
    def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5, skip: set[str] = {}):
964
        # Skip test if model does not support gradient checkpointing
965
        if not self.model_class._supports_gradient_checkpointing:
966
            pytest.skip("Gradient checkpointing is not supported.")
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        inputs_dict_copy = copy.deepcopy(inputs_dict)
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        torch.manual_seed(0)
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict_copy).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < loss_tolerance)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())

        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue
1011
1012
            if name in skip:
                continue
1013
1014
1015
1016
            # TODO(aryan): remove the below lines after looking into easyanimate transformer a little more
            # It currently errors out the gradient checkpointing test because the gradients for attn2.to_out is None
            if param.grad is None:
                continue
1017
1018
1019
1020
1021
1022
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))

    @unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
    def test_gradient_checkpointing_is_applied(
        self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
    ):
1023
        # Skip test if model does not support gradient checkpointing
1024
        if not self.model_class._supports_gradient_checkpointing:
1025
            pytest.skip("Gradient checkpointing is not supported.")
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        if attention_head_dim is not None:
            init_dict["attention_head_dim"] = attention_head_dim
        if num_attention_heads is not None:
            init_dict["num_attention_heads"] = num_attention_heads
        if block_out_channels is not None:
            init_dict["block_out_channels"] = block_out_channels

        model_class_copy = copy.copy(self.model_class)
        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

1040
1041
1042
1043
1044
1045
        modules_with_gc_enabled = {}
        for submodule in model.modules():
            if hasattr(submodule, "gradient_checkpointing"):
                self.assertTrue(submodule.gradient_checkpointing)
                modules_with_gc_enabled[submodule.__class__.__name__] = True

1046
1047
1048
        assert set(modules_with_gc_enabled.keys()) == expected_set
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
1068

1069
    @parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
1070
1071
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
1072
    def test_save_load_lora_adapter(self, rank, lora_alpha, use_dora=False):
1073
1074
1075
1076
1077
1078
1079
1080
1081
        from peft import LoraConfig
        from peft.utils import get_peft_model_state_dict

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1082
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1083
1084
1085
1086
1087

        torch.manual_seed(0)
        output_no_lora = model(**inputs_dict, return_dict=False)[0]

        denoiser_lora_config = LoraConfig(
1088
1089
            r=rank,
            lora_alpha=lora_alpha,
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")

            for k in state_dict_loaded:
                loaded_v = state_dict_loaded[k]
                retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
                self.assertTrue(torch.allclose(loaded_v, retrieved_v))

            self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
        self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))

    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
1128
    def test_lora_wrong_adapter_name_raises_error(self):
1129
1130
1131
1132
1133
1134
1135
1136
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1137
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            wrong_name = "foo"
            with self.assertRaises(ValueError) as err_context:
                model.save_lora_adapter(tmpdir, adapter_name=wrong_name)

            self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    @parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_lora_adapter_metadata_is_loaded_correctly(self, rank, lora_alpha, use_dora):
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1168
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

        denoiser_lora_config = LoraConfig(
            r=rank,
            lora_alpha=lora_alpha,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        metadata = model.peft_config["default"].to_dict()
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
            self.assertTrue(os.path.isfile(model_file))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            parsed_metadata = model.peft_config["default_0"].to_dict()
            check_if_dicts_are_equal(metadata, parsed_metadata)

    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_lora_adapter_wrong_metadata_raises_error(self):
        from peft import LoraConfig

        from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY
        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1205
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
            self.assertTrue(os.path.isfile(model_file))

            # Perturb the metadata in the state dict.
            loaded_state_dict = safetensors.torch.load_file(model_file)
            metadata = {"format": "pt"}
            lora_adapter_metadata = denoiser_lora_config.to_dict()
            lora_adapter_metadata.update({"foo": 1, "bar": 2})
            for key, value in lora_adapter_metadata.items():
                if isinstance(value, set):
                    lora_adapter_metadata[key] = list(value)
            metadata[LORA_ADAPTER_METADATA_KEY] = json.dumps(lora_adapter_metadata, indent=2, sort_keys=True)
            safetensors.torch.save_file(loaded_state_dict, model_file, metadata=metadata)

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            with self.assertRaises(TypeError) as err_context:
                model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            self.assertTrue("`LoraConfig` class could not be instantiated" in str(err_context.exception))

1240
    @require_torch_accelerator
1241
    def test_cpu_offload(self):
1242
1243
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1244
1245
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1246

1247
1248
1249
1250
1251
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1252
        model_size = compute_module_sizes(model)[""]
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1270
    @require_torch_accelerator
1271
    def test_disk_offload_without_safetensors(self):
1272
1273
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1274
1275
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1276

1277
1278
1279
1280
1281
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1282
        model_size = compute_module_sizes(model)[""]
1283
1284
1285
1286
        max_size = int(self.model_split_percents[0] * model_size)
        # Force disk offload by setting very small CPU memory
        max_memory = {0: max_size, "cpu": int(0.1 * max_size)}

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
            with self.assertRaises(ValueError):
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1303
    @require_torch_accelerator
1304
    def test_disk_offload_with_safetensors(self):
1305
1306
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1307
1308
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1309

1310
1311
1312
1313
1314
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1315
        model_size = compute_module_sizes(model)[""]
1316
1317
1318
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

1319
            max_size = int(self.model_split_percents[0] * model_size)
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1331
    @require_torch_multi_accelerator
1332
    def test_model_parallelism(self):
1333
1334
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1335
1336
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1337

1338
1339
1340
1341
1342
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1343
        model_size = compute_module_sizes(model)[""]
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1362
    @require_torch_accelerator
1363
    def test_sharded_checkpoints(self):
1364
        torch.manual_seed(0)
1365
1366
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1367
1368
1369
1370
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1371
        model_size = compute_module_persistent_sizes(model)[""]
1372
1373
1374
1375
1376
1377
1378
1379
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1380
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1381
1382
1383
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

1384
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
1385
            new_model = new_model.to(torch_device)
1386
1387

            torch.manual_seed(0)
1388
1389
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1390
            new_output = new_model(**inputs_dict)
1391

1392
1393
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1394
    @require_torch_accelerator
1395
1396
1397
1398
1399
1400
1401
1402
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1403
        model_size = compute_module_persistent_sizes(model)[""]
1404
1405
1406
1407
1408
1409
1410
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
1411

1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1432
    @require_torch_accelerator
1433
    def test_sharded_checkpoints_device_map(self):
1434
1435
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1436
1437
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1438
1439
1440
1441
1442
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

1443
        model_size = compute_module_persistent_sizes(model)[""]
1444
1445
1446
1447
1448
1449
1450
1451
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1452
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1453
1454
1455
1456
1457
1458
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
1459
1460
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1461
1462
1463
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1464
1465
1466
1467
1468
1469
1470
1471
    # This test is okay without a GPU because we're not running any execution. We're just serializing
    # and check if the resultant files are following an expected format.
    def test_variant_sharded_ckpt_right_format(self):
        for use_safe in [True, False]:
            extension = ".safetensors" if use_safe else ".bin"
            config, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**config).eval()

1472
            model_size = compute_module_persistent_sizes(model)[""]
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
            max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
            variant = "fp16"
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(
                    tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
                )
                index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
                self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))

                # Now check if the right number of shards exists. First, let's get the number of shards.
                # Since this number can be dependent on the model being tested, it's important that we calculate it
                # instead of hardcoding it.
                expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
                actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
                self.assertTrue(actual_num_shards == expected_num_shards)

                # Check if the variant is present as a substring in the checkpoints.
                shard_files = [
                    file
                    for file in os.listdir(tmp_dir)
                    if file.endswith(extension) or ("index" in file and "json" in file)
                ]
                assert all(variant in f for f in shard_files)

                # Check if the sharded checkpoints were serialized in the right format.
                shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
                # Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
                assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)

1502
1503
1504
    def test_layerwise_casting_training(self):
        def test_fn(storage_dtype, compute_dtype):
            if torch.device(torch_device).type == "cpu" and compute_dtype == torch.bfloat16:
1505
                pytest.skip("Skipping test because CPU doesn't go well with bfloat16.")
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

            model = self.model_class(**init_dict)
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
            model.train()

            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            with torch.amp.autocast(device_type=torch.device(torch_device).type):
                output = model(**inputs_dict)

                if isinstance(output, dict):
                    output = output.to_tuple()[0]

                input_tensor = inputs_dict[self.main_input_name]
                noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
                noise = cast_maybe_tensor_dtype(noise, torch.float32, compute_dtype)
                loss = torch.nn.functional.mse_loss(output, noise)

            loss.backward()

        test_fn(torch.float16, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.float32)
        test_fn(torch.float8_e5m2, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.bfloat16)

1532
    @torch.no_grad()
Aryan's avatar
Aryan committed
1533
1534
1535
1536
1537
    def test_layerwise_casting_inference(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1538
1539
1540
1541
        model = self.model_class(**config)
        model.eval()
        model.to(torch_device)
        base_slice = model(**inputs_dict)[0].detach().flatten().cpu().numpy()
Aryan's avatar
Aryan committed
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def test_layerwise_casting(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            check_linear_dtype(model, storage_dtype, compute_dtype)
            output = model(**inputs_dict)[0].float().flatten().detach().cpu().numpy()

            # The precision test is not very important for fast tests. In most cases, the outputs will not be the same.
            # We just want to make sure that the layerwise casting is working as expected.
            self.assertTrue(numpy_cosine_similarity_distance(base_slice, output) < 1.0)

        test_layerwise_casting(torch.float16, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.float32)
        test_layerwise_casting(torch.float8_e5m2, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)

1578
    @require_torch_accelerator
1579
    @torch.no_grad()
Aryan's avatar
Aryan committed
1580
1581
    def test_layerwise_casting_memory(self):
        MB_TOLERANCE = 0.2
1582
        LEAST_COMPUTE_CAPABILITY = 8.0
Aryan's avatar
Aryan committed
1583
1584
1585

        def reset_memory_stats():
            gc.collect()
1586
1587
1588
            backend_synchronize(torch_device)
            backend_empty_cache(torch_device)
            backend_reset_peak_memory_stats(torch_device)
Aryan's avatar
Aryan committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600

        def get_memory_usage(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            reset_memory_stats()
            model(**inputs_dict)
            model_memory_footprint = model.get_memory_footprint()
1601
            peak_inference_memory_allocated_mb = backend_max_memory_allocated(torch_device) / 1024**2
Aryan's avatar
Aryan committed
1602
1603
1604
1605
1606
1607
1608
1609
1610

            return model_memory_footprint, peak_inference_memory_allocated_mb

        fp32_memory_footprint, fp32_max_memory = get_memory_usage(torch.float32, torch.float32)
        fp8_e4m3_fp32_memory_footprint, fp8_e4m3_fp32_max_memory = get_memory_usage(torch.float8_e4m3fn, torch.float32)
        fp8_e4m3_bf16_memory_footprint, fp8_e4m3_bf16_max_memory = get_memory_usage(
            torch.float8_e4m3fn, torch.bfloat16
        )

1611
        compute_capability = get_torch_cuda_device_capability() if torch_device == "cuda" else None
Aryan's avatar
Aryan committed
1612
        self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
1613
1614
1615
1616
        # NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
        # On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
        if compute_capability and compute_capability >= LEAST_COMPUTE_CAPABILITY:
            self.assertTrue(fp8_e4m3_bf16_max_memory < fp8_e4m3_fp32_max_memory)
Aryan's avatar
Aryan committed
1617
1618
1619
1620
1621
1622
1623
1624
        # On this dummy test case with a small model, sometimes fp8_e4m3_fp32 max memory usage is higher than fp32 by a few
        # bytes. This only happens for some models, so we allow a small tolerance.
        # For any real model being tested, the order would be fp8_e4m3_bf16 < fp8_e4m3_fp32 < fp32.
        self.assertTrue(
            fp8_e4m3_fp32_max_memory < fp32_max_memory
            or abs(fp8_e4m3_fp32_max_memory - fp32_max_memory) < MB_TOLERANCE
        )

1625
    @parameterized.expand([False, True])
1626
    @require_torch_accelerator
1627
    def test_group_offloading(self, record_stream):
1628
1629
1630
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

Aryan's avatar
Aryan committed
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        torch.manual_seed(0)

        @torch.no_grad()
        def run_forward(model):
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            return model(**inputs_dict)[0]

        model = self.model_class(**init_dict)

        model.to(torch_device)
        output_without_group_offloading = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading1 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, non_blocking=True)
        output_with_group_offloading2 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading3 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
1668
1669
1670
        model.enable_group_offload(
            torch_device, offload_type="leaf_level", use_stream=True, record_stream=record_stream
        )
Aryan's avatar
Aryan committed
1671
1672
1673
1674
1675
1676
1677
        output_with_group_offloading4 = run_forward(model)

        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))

1678
1679
1680
1681
    @parameterized.expand([(False, "block_level"), (True, "leaf_level")])
    @require_torch_accelerator
    @torch.no_grad()
    def test_group_offloading_with_layerwise_casting(self, record_stream, offload_type):
1682
1683
1684
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.to(torch_device)
        model.eval()
        _ = model(**inputs_dict)[0]

        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        storage_dtype, compute_dtype = torch.float16, torch.float32
        inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
        model = self.model_class(**init_dict)
        model.eval()
        additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": 1}
        model.enable_group_offload(
            torch_device, offload_type=offload_type, use_stream=True, record_stream=record_stream, **additional_kwargs
        )
        model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
        _ = model(**inputs_dict)[0]

1706
    @parameterized.expand([("block_level", False), ("leaf_level", True)])
1707
1708
    @require_torch_accelerator
    @torch.no_grad()
1709
1710
    @torch.inference_mode()
    def test_group_offloading_with_disk(self, offload_type, record_stream, atol=1e-5):
1711
1712
1713
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
        def _has_generator_arg(model):
            sig = inspect.signature(model.forward)
            params = sig.parameters
            return "generator" in params

        def _run_forward(model, inputs_dict):
            accepts_generator = _has_generator_arg(model)
            if accepts_generator:
                inputs_dict["generator"] = torch.manual_seed(0)
            torch.manual_seed(0)
            return model(**inputs_dict)[0]

        if self.__class__.__name__ == "AutoencoderKLCosmosTests" and offload_type == "leaf_level":
            pytest.skip("With `leaf_type` as the offloading type, it fails. Needs investigation.")

1729
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1730
        torch.manual_seed(0)
1731
        model = self.model_class(**init_dict)
1732

1733
        model.eval()
1734
1735
1736
1737
1738
1739
1740
1741
1742
        model.to(torch_device)
        output_without_group_offloading = _run_forward(model, inputs_dict)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.eval()

        num_blocks_per_group = None if offload_type == "leaf_level" else 1
        additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": num_blocks_per_group}
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
        with tempfile.TemporaryDirectory() as tmpdir:
            model.enable_group_offload(
                torch_device,
                offload_type=offload_type,
                offload_to_disk_path=tmpdir,
                use_stream=True,
                record_stream=record_stream,
                **additional_kwargs,
            )
            has_safetensors = glob.glob(f"{tmpdir}/*.safetensors")
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
            self.assertTrue(has_safetensors, "No safetensors found in the directory.")

            # For "leaf-level", there is a prefetching hook which makes this check a bit non-deterministic
            # in nature. So, skip it.
            if offload_type != "leaf_level":
                is_correct, extra_files, missing_files = _check_safetensors_serialization(
                    module=model,
                    offload_to_disk_path=tmpdir,
                    offload_type=offload_type,
                    num_blocks_per_group=num_blocks_per_group,
                )
                if not is_correct:
                    if extra_files:
                        raise ValueError(f"Found extra files: {', '.join(extra_files)}")
                    elif missing_files:
                        raise ValueError(f"Following files are missing: {', '.join(missing_files)}")

            output_with_group_offloading = _run_forward(model, inputs_dict)
            self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading, atol=atol))
1772

hlky's avatar
hlky committed
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
    def test_auto_model(self, expected_max_diff=5e-5):
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

        model = model.eval()
        model = model.to(torch_device)

        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()

        with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
            model.save_pretrained(tmpdirname, safe_serialization=False)

            auto_model = AutoModel.from_pretrained(tmpdirname)
            if hasattr(auto_model, "set_default_attn_processor"):
                auto_model.set_default_attn_processor()

        auto_model = auto_model.eval()
        auto_model = auto_model.to(torch_device)

        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_original = model(**self.inputs_dict(0))
                output_auto = auto_model(**self.inputs_dict(0))
            else:
                output_original = model(**inputs_dict)
                output_auto = auto_model(**inputs_dict)

            if isinstance(output_original, dict):
                output_original = output_original.to_tuple()[0]
            if isinstance(output_auto, dict):
                output_auto = output_auto.to_tuple()[0]

        max_diff = (output_original - output_auto).abs().max().item()
        self.assertLessEqual(
            max_diff,
            expected_max_diff,
            f"AutoModel forward pass diff: {max_diff} exceeds threshold {expected_max_diff}",
        )

1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
    @parameterized.expand(
        [
            (-1, "You can't pass device_map as a negative int"),
            ("foo", "When passing device_map as a string, the value needs to be a device name"),
        ]
    )
    def test_wrong_device_map_raises_error(self, device_map, msg_substring):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            with self.assertRaises(ValueError) as err_ctx:
                _ = self.model_class.from_pretrained(tmpdir, device_map=device_map)

        assert msg_substring in str(err_ctx.exception)

    @parameterized.expand([0, "cuda", torch.device("cuda")])
    @require_torch_gpu
    def test_passing_non_dict_device_map_works(self, device_map):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).eval()
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
            _ = loaded_model(**inputs_dict)

    @parameterized.expand([("", "cuda"), ("", torch.device("cuda"))])
    @require_torch_gpu
    def test_passing_dict_device_map_works(self, name, device):
        # There are other valid dict-based `device_map` values too. It's best to refer to
        # the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).eval()
        device_map = {name: device}
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
            _ = loaded_model(**inputs_dict)

1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
1946
1947


1948
1949
1950
1951
@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
1952
class TorchCompileTesterMixin:
1953
1954
    different_shapes_for_compilation = None

1955
1956
1957
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
1958
        torch.compiler.reset()
1959
1960
1961
1962
1963
1964
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
1965
        torch.compiler.reset()
1966
1967
1968
1969
1970
1971
1972
1973
1974
        gc.collect()
        backend_empty_cache(torch_device)

    def test_torch_compile_recompilation_and_graph_break(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
        model = torch.compile(model, fullgraph=True)

1975
1976
1977
1978
1979
        with (
            torch._inductor.utils.fresh_inductor_cache(),
            torch._dynamo.config.patch(error_on_recompile=True),
            torch.no_grad(),
        ):
1980
1981
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

    def test_torch_compile_repeated_blocks(self):
        if self.model_class._repeated_blocks is None:
            pytest.skip("Skipping test as the model class doesn't have `_repeated_blocks` set.")

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
        model.compile_repeated_blocks(fullgraph=True)

        recompile_limit = 1
        if self.model_class.__name__ == "UNet2DConditionModel":
            recompile_limit = 2

        with (
            torch._inductor.utils.fresh_inductor_cache(),
            torch._dynamo.config.patch(recompile_limit=recompile_limit),
            torch.no_grad(),
        ):
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)
2003

2004
    def test_compile_with_group_offloading(self):
2005
2006
2007
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
        torch._dynamo.config.cache_size_limit = 10000

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.eval()
        # TODO: Can test for other group offloading kwargs later if needed.
        group_offload_kwargs = {
            "onload_device": "cuda",
            "offload_device": "cpu",
            "offload_type": "block_level",
            "num_blocks_per_group": 1,
            "use_stream": True,
            "non_blocking": True,
        }
        model.enable_group_offload(**group_offload_kwargs)
        model.compile()
        with torch.no_grad():
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
    @require_torch_version_greater("2.7.1")
    def test_compile_on_different_shapes(self):
        if self.different_shapes_for_compilation is None:
            pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
        torch.fx.experimental._config.use_duck_shape = False

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model = torch.compile(model, fullgraph=True, dynamic=True)

        for height, width in self.different_shapes_for_compilation:
            with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
                inputs_dict = self.prepare_dummy_input(height=height, width=width)
                _ = model(**inputs_dict)

2044

2045
2046
2047
2048
2049
2050
@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
@is_torch_compile
2051
class LoraHotSwappingForModelTesterMixin:
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
    """Test that hotswapping does not result in recompilation on the model directly.

    We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
    tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
    recompilation.

    See
    https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
    for the analogous PEFT test.

    """

2064
2065
    different_shapes_for_compilation = None

2066
2067
2068
2069
    def tearDown(self):
        # It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
        # there will be recompilation errors, as torch caches the model when run in the same process.
        super().tearDown()
2070
        torch.compiler.reset()
2071
2072
2073
        gc.collect()
        backend_empty_cache(torch_device)

2074
    def get_lora_config(self, lora_rank, lora_alpha, target_modules):
2075
2076
2077
        # from diffusers test_models_unet_2d_condition.py
        from peft import LoraConfig

2078
        lora_config = LoraConfig(
2079
2080
2081
2082
2083
2084
            r=lora_rank,
            lora_alpha=lora_alpha,
            target_modules=target_modules,
            init_lora_weights=False,
            use_dora=False,
        )
2085
        return lora_config
2086

2087
2088
2089
2090
2091
    def get_linear_module_name_other_than_attn(self, model):
        linear_names = [
            name for name, module in model.named_modules() if isinstance(module, nn.Linear) and "to_" not in name
        ]
        return linear_names[0]
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

    def check_model_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
        """
        Check that hotswapping works on a small unet.

        Steps:
        - create 2 LoRA adapters and save them
        - load the first adapter
        - hotswap the second adapter
        - check that the outputs are correct
        - optionally compile the model
2103
        - optionally check if recompilations happen on different shapes
2104
2105
2106
2107
2108

        Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
        fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
        fine.
        """
2109
        different_shapes = self.different_shapes_for_compilation
2110
        # create 2 adapters with different ranks and alphas
2111
2112
2113
2114
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

2115
2116
2117
2118
        alpha0, alpha1 = rank0, rank1
        max_rank = max([rank0, rank1])
        if target_modules1 is None:
            target_modules1 = target_modules0[:]
2119
2120
        lora_config0 = self.get_lora_config(rank0, alpha0, target_modules0)
        lora_config1 = self.get_lora_config(rank1, alpha1, target_modules1)
2121

2122
        model.add_adapter(lora_config0, adapter_name="adapter0")
2123
        with torch.inference_mode():
2124
2125
            torch.manual_seed(0)
            output0_before = model(**inputs_dict)["sample"]
2126

2127
2128
        model.add_adapter(lora_config1, adapter_name="adapter1")
        model.set_adapter("adapter1")
2129
        with torch.inference_mode():
2130
2131
            torch.manual_seed(0)
            output1_before = model(**inputs_dict)["sample"]
2132
2133
2134
2135
2136
2137
2138
2139
2140

        # sanity checks:
        tol = 5e-3
        assert not torch.allclose(output0_before, output1_before, atol=tol, rtol=tol)
        assert not (output0_before == 0).all()
        assert not (output1_before == 0).all()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
2141
2142
2143
            model.save_lora_adapter(os.path.join(tmp_dirname, "0"), safe_serialization=True, adapter_name="adapter0")
            model.save_lora_adapter(os.path.join(tmp_dirname, "1"), safe_serialization=True, adapter_name="adapter1")
            del model
2144
2145

            # load the first adapter
2146
2147
2148
2149
            torch.manual_seed(0)
            init_dict, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict).to(torch_device)

2150
2151
            if do_compile or (rank0 != rank1):
                # no need to prepare if the model is not compiled or if the ranks are identical
2152
                model.enable_lora_hotswap(target_rank=max_rank)
2153
2154
2155

            file_name0 = os.path.join(os.path.join(tmp_dirname, "0"), "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(os.path.join(tmp_dirname, "1"), "pytorch_lora_weights.safetensors")
2156
            model.load_lora_adapter(file_name0, safe_serialization=True, adapter_name="adapter0", prefix=None)
2157
2158

            if do_compile:
2159
                model = torch.compile(model, mode="reduce-overhead", dynamic=different_shapes is not None)
2160
2161

            with torch.inference_mode():
2162
2163
2164
2165
2166
2167
2168
2169
                # additionally check if dynamic compilation works.
                if different_shapes is not None:
                    for height, width in different_shapes:
                        new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
                        _ = model(**new_inputs_dict)
                else:
                    output0_after = model(**inputs_dict)["sample"]
                    assert torch.allclose(output0_before, output0_after, atol=tol, rtol=tol)
2170
2171

            # hotswap the 2nd adapter
2172
            model.load_lora_adapter(file_name1, adapter_name="adapter0", hotswap=True, prefix=None)
2173
2174
2175

            # we need to call forward to potentially trigger recompilation
            with torch.inference_mode():
2176
2177
2178
2179
2180
2181
2182
                if different_shapes is not None:
                    for height, width in different_shapes:
                        new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
                        _ = model(**new_inputs_dict)
                else:
                    output1_after = model(**inputs_dict)["sample"]
                    assert torch.allclose(output1_before, output1_after, atol=tol, rtol=tol)
2183
2184
2185
2186
2187

            # check error when not passing valid adapter name
            name = "does-not-exist"
            msg = f"Trying to hotswap LoRA adapter '{name}' but there is no existing adapter by that name"
            with self.assertRaisesRegex(ValueError, msg):
2188
                model.load_lora_adapter(file_name1, adapter_name=name, hotswap=True, prefix=None)
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_model(self, rank0, rank1):
        self.check_model_hotswap(
            do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
        )

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_linear(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
2200
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2201
2202
2203
2204
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_conv2d(self, rank0, rank1):
2205
        if "unet" not in self.model_class.__name__.lower():
2206
            pytest.skip("Test only applies to UNet.")
2207

2208
2209
        # It's important to add this context to raise an error on recompilation
        target_modules = ["conv", "conv1", "conv2"]
2210
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2211
2212
2213
2214
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_conv2d(self, rank0, rank1):
2215
        if "unet" not in self.model_class.__name__.lower():
2216
            pytest.skip("Test only applies to UNet.")
2217

2218
2219
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "conv"]
2220
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2221
2222
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_other(self, rank0, rank1):
        # In `test_hotswapping_compiled_model_both_linear_and_conv2d()`, we check if we can do hotswapping
        # with `torch.compile()` for models that have both linear and conv layers. In this test, we check
        # if we can target a linear layer from the transformer blocks and another linear layer from non-attention
        # block.
        target_modules = ["to_q"]
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        target_modules.append(self.get_linear_module_name_other_than_attn(model))
        del model

        # It's important to add this context to raise an error on recompilation
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

2240
2241
    def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
2242
2243
2244
2245
2246
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)

2247
2248
        msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
        with self.assertRaisesRegex(RuntimeError, msg):
2249
            model.enable_lora_hotswap(target_rank=32)
2250
2251
2252
2253
2254

    def test_enable_lora_hotswap_called_after_adapter_added_warning(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        from diffusers.loaders.peft import logger

2255
2256
2257
2258
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2259
2260
2261
2262
        msg = (
            "It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
        )
        with self.assertLogs(logger=logger, level="WARNING") as cm:
2263
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
2264
2265
2266
2267
            assert any(msg in log for log in cm.output)

    def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
        # check possibility to ignore the error/warning
2268
2269
2270
2271
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2272
2273
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")  # Capture all warnings
2274
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
2275
2276
2277
2278
            self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")

    def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
        # check that wrong argument value raises an error
2279
2280
2281
2282
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2283
2284
        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
        with self.assertRaisesRegex(ValueError, msg):
2285
            model.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299

    def test_hotswap_second_adapter_targets_more_layers_raises(self):
        # check the error and log
        from diffusers.loaders.peft import logger

        # at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
        target_modules0 = ["to_q"]
        target_modules1 = ["to_q", "to_k"]
        with self.assertRaises(RuntimeError):  # peft raises RuntimeError
            with self.assertLogs(logger=logger, level="ERROR") as cm:
                self.check_model_hotswap(
                    do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
                )
                assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])
    @require_torch_version_greater("2.7.1")
    def test_hotswapping_compile_on_different_shapes(self, rank0, rank1):
        different_shapes_for_compilation = self.different_shapes_for_compilation
        if different_shapes_for_compilation is None:
            pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
        # Specifying `use_duck_shape=False` instructs the compiler if it should use the same symbolic
        # variable to represent input sizes that are the same. For more details,
        # check out this [comment](https://github.com/huggingface/diffusers/pull/11327#discussion_r2047659790).
        torch.fx.experimental._config.use_duck_shape = False

        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(
                do_compile=True,
                rank0=rank0,
                rank1=rank1,
                target_modules0=target_modules,
            )