unet_2d_condition.py 56.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
23
from ..utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
24
from .activations import get_activation
25
26
27
28
29
30
31
from .attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
YiYi Xu's avatar
YiYi Xu committed
32
33
from .embeddings import (
    GaussianFourierProjection,
YiYi Xu's avatar
YiYi Xu committed
34
35
36
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
37
    PositionNet,
YiYi Xu's avatar
YiYi Xu committed
38
39
40
41
42
43
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
44
from .modeling_utils import ModelMixin
45
from .unet_2d_blocks import (
46
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
47
    UNetMidBlock2DSimpleCrossAttn,
48
49
50
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
51
52


53
54
55
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


56
57
58
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
59
60
    The output of [`UNet2DConditionModel`].

61
62
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
63
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
64
65
    """

66
    sample: torch.FloatTensor = None
67
68


69
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
70
    r"""
Steven Liu's avatar
Steven Liu committed
71
72
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
Kashif Rasul's avatar
Kashif Rasul committed
73

Steven Liu's avatar
Steven Liu committed
74
75
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
Kashif Rasul's avatar
Kashif Rasul committed
76
77

    Parameters:
78
79
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Steven Liu's avatar
Steven Liu committed
80
81
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
82
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
83
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
84
85
86
87
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
88
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Steven Liu's avatar
Steven Liu committed
89
90
91
            Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
Kashif Rasul's avatar
Kashif Rasul committed
92
            The tuple of upsample blocks to use.
93
94
95
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
96
97
98
99
100
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
101
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Kashif Rasul's avatar
Kashif Rasul committed
102
103
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
104
            If `None`, normalization and activation layers is skipped in post-processing.
Kashif Rasul's avatar
Kashif Rasul committed
105
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
106
107
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
108
109
110
111
112
        transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
113
114
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
Steven Liu's avatar
Steven Liu committed
115
116
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
YiYi Xu's avatar
YiYi Xu committed
117
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
Kashif Rasul's avatar
Kashif Rasul committed
118
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
119
120
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
121
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
Steven Liu's avatar
Steven Liu committed
122
123
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
124
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
125
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Steven Liu's avatar
Steven Liu committed
126
        addition_embed_type (`str`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
127
128
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
129
130
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
Steven Liu's avatar
Steven Liu committed
131
        num_class_embeds (`int`, *optional*, defaults to `None`):
132
133
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
Steven Liu's avatar
Steven Liu committed
134
        time_embedding_type (`str`, *optional*, defaults to `positional`):
135
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Steven Liu's avatar
Steven Liu committed
136
        time_embedding_dim (`int`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
137
            An optional override for the dimension of the projected time embedding.
Steven Liu's avatar
Steven Liu committed
138
139
140
141
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
142
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
Steven Liu's avatar
Steven Liu committed
143
144
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
145
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
146
147
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
Steven Liu's avatar
Steven Liu committed
148
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
149
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
150
151
152
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
Steven Liu's avatar
Steven Liu committed
153
154
155
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
Kashif Rasul's avatar
Kashif Rasul committed
156
157
    """

158
159
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
163
164
165
166
167
168
169
170
171
172
173
174
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
175
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
176
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
177
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
178
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
179
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
180
181
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
182
        dropout: float = 0.0,
Sid Sahai's avatar
Sid Sahai committed
183
        act_fn: str = "silu",
184
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
185
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
186
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
187
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
William Berman's avatar
William Berman committed
188
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
189
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
190
        attention_head_dim: Union[int, Tuple[int]] = 8,
191
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
192
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
193
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
194
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
195
        addition_embed_type: Optional[str] = None,
196
        addition_time_embed_dim: Optional[int] = None,
197
        num_class_embeds: Optional[int] = None,
198
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
199
        resnet_time_scale_shift: str = "default",
200
201
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
202
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
203
        time_embedding_dim: Optional[int] = None,
204
        time_embedding_act_fn: Optional[str] = None,
205
206
207
208
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
209
        projection_class_embeddings_input_dim: Optional[int] = None,
210
        attention_type: str = "default",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
211
        class_embeddings_concat: bool = False,
212
        mid_block_only_cross_attention: Optional[bool] = None,
213
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
214
        addition_embed_type_num_heads=64,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
219
    ):
        super().__init__()

        self.sample_size = sample_size

220
221
222
223
224
        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

225
226
227
228
229
230
231
232
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

249
250
251
252
253
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
254
255
256
257
258
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
259
260
261
262
263
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

264
265
266
267
268
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
269
        # input
270
271
272
273
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
274
275

        # time
276
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
277
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
278
279
280
281
282
283
284
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
285
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
286
287
288
289
290

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
291
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
292
            )
Patrick von Platen's avatar
Patrick von Platen committed
293

294
295
296
297
298
299
300
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
301

YiYi Xu's avatar
YiYi Xu committed
302
303
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
304
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
305
306
307
308
309
310
311
312
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
313
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
314
315
316
317
318
319
320
321
322
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
323
324
325
326
327
328
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
329
330
331
332
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
333
334
335
        else:
            self.encoder_hid_proj = None

336
        # class embedding
Will Berman's avatar
Will Berman committed
337
        if class_embed_type is None and num_class_embeds is not None:
338
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
339
        elif class_embed_type == "timestep":
340
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
341
342
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
343
344
345
346
347
348
349
350
351
352
353
354
355
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
356
357
358
359
360
361
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
362
363
        else:
            self.class_embedding = None
364

Patrick von Platen's avatar
Patrick von Platen committed
365
366
367
368
369
370
371
372
373
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
374
375
376
377
378
379
380
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
381
382
383
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
YiYi Xu's avatar
YiYi Xu committed
384
385
386
387
388
389
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
Patrick von Platen's avatar
Patrick von Platen committed
390
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
391
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
392

393
394
395
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
396
            self.time_embed_act = get_activation(time_embedding_act_fn)
397

Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

401
        if isinstance(only_cross_attention, bool):
402
403
404
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

405
406
            only_cross_attention = [only_cross_attention] * len(down_block_types)

407
408
409
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

410
411
412
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
413
414
415
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
416
417
418
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

419
420
421
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

422
423
424
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
425
426
427
428
429
430
431
432
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
433
434
435
436
437
438
439
440
441
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
442
                num_layers=layers_per_block[i],
443
                transformer_layers_per_block=transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
444
445
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
446
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
447
448
449
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
450
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
451
                cross_attention_dim=cross_attention_dim[i],
452
                num_attention_heads=num_attention_heads[i],
Patrick von Platen's avatar
Patrick von Platen committed
453
                downsample_padding=downsample_padding,
454
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
455
                use_linear_projection=use_linear_projection,
456
                only_cross_attention=only_cross_attention[i],
457
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
458
                resnet_time_scale_shift=resnet_time_scale_shift,
459
                attention_type=attention_type,
460
461
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
462
                cross_attention_norm=cross_attention_norm,
463
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
464
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
468
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
469
470
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
471
                transformer_layers_per_block=transformer_layers_per_block[-1],
Will Berman's avatar
Will Berman committed
472
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
473
                temb_channels=blocks_time_embed_dim,
474
                dropout=dropout,
Will Berman's avatar
Will Berman committed
475
476
477
478
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
479
                cross_attention_dim=cross_attention_dim[-1],
480
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
481
482
483
484
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
485
                attention_type=attention_type,
Will Berman's avatar
Will Berman committed
486
487
488
489
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
490
                temb_channels=blocks_time_embed_dim,
491
                dropout=dropout,
Will Berman's avatar
Will Berman committed
492
493
494
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
495
                cross_attention_dim=cross_attention_dim[-1],
496
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
497
498
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
499
                skip_time_act=resnet_skip_time_act,
500
                only_cross_attention=mid_block_only_cross_attention,
501
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
502
            )
503
504
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
505
506
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
507

508
509
510
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
511
512
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
513
        reversed_num_attention_heads = list(reversed(num_attention_heads))
514
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
515
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
516
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
517
        only_cross_attention = list(reversed(only_cross_attention))
518

Patrick von Platen's avatar
Patrick von Platen committed
519
520
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
521
522
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
523
524
525
526
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

527
528
529
530
531
532
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535

            up_block = get_up_block(
                up_block_type,
536
                num_layers=reversed_layers_per_block[i] + 1,
537
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
541
                temb_channels=blocks_time_embed_dim,
542
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
543
544
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
545
                resolution_idx=i,
546
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
547
                cross_attention_dim=reversed_cross_attention_dim[i],
548
                num_attention_heads=reversed_num_attention_heads[i],
549
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
550
                use_linear_projection=use_linear_projection,
551
                only_cross_attention=only_cross_attention[i],
552
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
553
                resnet_time_scale_shift=resnet_time_scale_shift,
554
                attention_type=attention_type,
555
556
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
557
                cross_attention_norm=cross_attention_norm,
558
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
559
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
560
561
562
563
564
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
565
566
567
568
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
569

570
            self.conv_act = get_activation(act_fn)
571

572
573
574
575
576
577
578
579
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
580

581
        if attention_type in ["gated", "gated-text-image"]:
582
583
584
585
586
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]
587
588
589
590
591

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = PositionNet(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )
592

593
    @property
Patrick von Platen's avatar
Patrick von Platen committed
594
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
595
596
597
598
599
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
600
        # set recursively
601
602
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
603
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
604
605
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
606
607
608
609
610
611
612
613
614
615
616

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

617
618
619
    def set_attn_processor(
        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
    ):
620
        r"""
Steven Liu's avatar
Steven Liu committed
621
622
        Sets the attention processor to use to compute attention.

623
        Parameters:
Steven Liu's avatar
Steven Liu committed
624
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
625
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
626
627
628
629
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
630
631
632
633
634
635
636
637
638
639
640

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
641
            if hasattr(module, "set_processor"):
642
                if not isinstance(processor, dict):
643
                    module.set_processor(processor, _remove_lora=_remove_lora)
644
                else:
645
                    module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
646

647
648
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
649

650
651
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
652

653
654
655
656
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
657
658
659
660
661
662
663
664
665
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

666
        self.set_attn_processor(processor, _remove_lora=True)
667

668
    def set_attention_slice(self, slice_size):
669
670
        r"""
        Enable sliced attention computation.
671

Steven Liu's avatar
Steven Liu committed
672
673
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
674

675
676
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
677
678
679
680
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
681
682
683
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
684
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
685
686
687
688
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
689
                fn_recursive_retrieve_sliceable_dims(child)
690
691
692

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
693
            fn_recursive_retrieve_sliceable_dims(module)
694

Alexander Pivovarov's avatar
Alexander Pivovarov committed
695
        num_sliceable_layers = len(sliceable_head_dims)
696
697
698
699
700
701
702

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
703
            slice_size = num_sliceable_layers * [1]
704

Alexander Pivovarov's avatar
Alexander Pivovarov committed
705
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
706
707
708
709
710
711

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
732

733
    def _set_gradient_checkpointing(self, module, value=False):
734
        if hasattr(module, "gradient_checkpointing"):
735
736
            module.gradient_checkpointing = value

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    def enable_freeu(self, s1, s2, b1, b2):
        r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
                if hasattr(upsample_block, k) or getattr(upsample_block, k) is not None:
                    setattr(upsample_block, k, None)

Patrick von Platen's avatar
Patrick von Platen committed
769
770
771
772
773
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
774
        class_labels: Optional[torch.Tensor] = None,
775
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
776
        attention_mask: Optional[torch.Tensor] = None,
777
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
778
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
779
780
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
781
        encoder_attention_mask: Optional[torch.Tensor] = None,
782
783
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
784
        r"""
Steven Liu's avatar
Steven Liu committed
785
786
        The [`UNet2DConditionModel`] forward method.

Kashif Rasul's avatar
Kashif Rasul committed
787
        Args:
Steven Liu's avatar
Steven Liu committed
788
789
790
791
792
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
813
            encoder_attention_mask (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
814
815
816
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
Kashif Rasul's avatar
Kashif Rasul committed
817
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
818
819
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
820
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
821
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
822
823
824
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
Kashif Rasul's avatar
Kashif Rasul committed
825
826
827

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
828
829
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
Kashif Rasul's avatar
Kashif Rasul committed
830
        """
831
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
832
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
833
834
835
836
837
838
839
840
841
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
842
            # Forward upsample size to force interpolation output size.
843
844
            forward_upsample_size = True

845
846
847
848
849
850
851
852
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
853
        if attention_mask is not None:
854
855
856
857
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
858
859
860
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

861
862
863
864
865
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
866
867
868
869
870
871
872
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
873
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
874
875
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
876
            if isinstance(timestep, float):
877
878
879
880
881
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
882
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
883

884
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
885
        timesteps = timesteps.expand(sample.shape[0])
886

Patrick von Platen's avatar
Patrick von Platen committed
887
        t_emb = self.time_proj(timesteps)
888

889
        # `Timesteps` does not contain any weights and will always return f32 tensors
890
891
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
892
        t_emb = t_emb.to(dtype=sample.dtype)
893
894

        emb = self.time_embedding(t_emb, timestep_cond)
895
        aug_emb = None
Patrick von Platen's avatar
Patrick von Platen committed
896

Will Berman's avatar
Will Berman committed
897
        if self.class_embedding is not None:
898
899
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
900
901
902
903

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

904
905
906
907
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

908
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
909
910
911
912
913

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
914

Patrick von Platen's avatar
Patrick von Platen committed
915
916
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
917
        elif self.config.addition_embed_type == "text_image":
YiYi Xu's avatar
YiYi Xu committed
918
            # Kandinsky 2.1 - style
YiYi Xu's avatar
YiYi Xu committed
919
920
921
922
923
924
925
926
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
927
        elif self.config.addition_embed_type == "text_time":
928
            # SDXL - style
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
YiYi Xu's avatar
YiYi Xu committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)
962
963

        emb = emb + aug_emb if aug_emb is not None else emb
Patrick von Platen's avatar
Patrick von Platen committed
964

965
966
967
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
968
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
969
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
970
971
972
973
974
975
976
977
978
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
YiYi Xu's avatar
YiYi Xu committed
979
980
981
982
983
984
985
986
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
Patrick von Platen's avatar
Patrick von Platen committed
987
988
989
        # 2. pre-process
        sample = self.conv_in(sample)

990
991
992
993
994
995
        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

Patrick von Platen's avatar
Patrick von Platen committed
996
        # 3. down
997
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
998
999
1000
        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
Will Berman's avatar
Will Berman committed
1001
1002
1003
1004

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None

Patrick von Platen's avatar
Patrick von Platen committed
1005
1006
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
1007
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Will Berman's avatar
Will Berman committed
1008
1009
1010
1011
1012
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)

Patrick von Platen's avatar
Patrick von Platen committed
1013
                sample, res_samples = downsample_block(
1014
1015
1016
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1017
                    attention_mask=attention_mask,
1018
                    cross_attention_kwargs=cross_attention_kwargs,
1019
                    encoder_attention_mask=encoder_attention_mask,
Will Berman's avatar
Will Berman committed
1020
                    **additional_residuals,
Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
                )
            else:
1023
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1024

Will Berman's avatar
Will Berman committed
1025
1026
1027
                if is_adapter and len(down_block_additional_residuals) > 0:
                    sample += down_block_additional_residuals.pop(0)

Patrick von Platen's avatar
Patrick von Platen committed
1028
1029
            down_block_res_samples += res_samples

Will Berman's avatar
Will Berman committed
1030
        if is_controlnet:
1031
1032
1033
1034
1035
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
1036
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
1037
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1038
1039
1040

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
1041
        # 4. mid
1042
1043
1044
1045
1046
1047
1048
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
1049
                encoder_attention_mask=encoder_attention_mask,
1050
            )
1051
1052
1053
1054
1055
1056
1057
            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_block_additional_residuals) > 0
                and sample.shape == down_block_additional_residuals[0].shape
            ):
                sample += down_block_additional_residuals.pop(0)
Patrick von Platen's avatar
Patrick von Platen committed
1058

Will Berman's avatar
Will Berman committed
1059
        if is_controlnet:
1060
            sample = sample + mid_block_additional_residual
1061

Patrick von Platen's avatar
Patrick von Platen committed
1062
        # 5. up
1063
1064
1065
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
1066
1067
1068
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

1069
1070
1071
1072
1073
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

1074
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
1075
1076
1077
1078
1079
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
1080
                    cross_attention_kwargs=cross_attention_kwargs,
1081
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
1082
                    attention_mask=attention_mask,
1083
                    encoder_attention_mask=encoder_attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
1084
1085
                )
            else:
1086
                sample = upsample_block(
1087
1088
1089
1090
1091
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    scale=lora_scale,
1092
                )
1093

Patrick von Platen's avatar
Patrick von Platen committed
1094
        # 6. post-process
1095
1096
1097
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
1098
1099
        sample = self.conv_out(sample)

1100
1101
1102
1103
        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self)

1104
1105
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
1106

1107
        return UNet2DConditionOutput(sample=sample)