unet_2d_condition.py 52.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
23
from ..utils import BaseOutput, logging
24
from .activations import get_activation
25
26
27
28
29
30
31
from .attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
YiYi Xu's avatar
YiYi Xu committed
32
33
from .embeddings import (
    GaussianFourierProjection,
YiYi Xu's avatar
YiYi Xu committed
34
35
36
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
37
    PositionNet,
YiYi Xu's avatar
YiYi Xu committed
38
39
40
41
42
43
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
44
from .modeling_utils import ModelMixin
45
from .unet_2d_blocks import (
46
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
47
    UNetMidBlock2DSimpleCrossAttn,
48
49
50
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
51
52


53
54
55
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


56
57
58
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
59
60
    The output of [`UNet2DConditionModel`].

61
62
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
63
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
64
65
    """

66
    sample: torch.FloatTensor = None
67
68


69
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
70
    r"""
Steven Liu's avatar
Steven Liu committed
71
72
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
Kashif Rasul's avatar
Kashif Rasul committed
73

Steven Liu's avatar
Steven Liu committed
74
75
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
Kashif Rasul's avatar
Kashif Rasul committed
76
77

    Parameters:
78
79
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Steven Liu's avatar
Steven Liu committed
80
81
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
82
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
83
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
84
85
86
87
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
88
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Steven Liu's avatar
Steven Liu committed
89
90
91
            Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
Kashif Rasul's avatar
Kashif Rasul committed
92
            The tuple of upsample blocks to use.
93
94
95
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
96
97
98
99
100
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
101
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Kashif Rasul's avatar
Kashif Rasul committed
102
103
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
104
            If `None`, normalization and activation layers is skipped in post-processing.
Kashif Rasul's avatar
Kashif Rasul committed
105
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
106
107
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
108
109
110
111
112
        transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
113
114
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
Steven Liu's avatar
Steven Liu committed
115
116
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
YiYi Xu's avatar
YiYi Xu committed
117
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
Kashif Rasul's avatar
Kashif Rasul committed
118
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
119
120
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
121
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
Steven Liu's avatar
Steven Liu committed
122
123
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
124
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
125
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Steven Liu's avatar
Steven Liu committed
126
        addition_embed_type (`str`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
127
128
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
129
130
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
Steven Liu's avatar
Steven Liu committed
131
        num_class_embeds (`int`, *optional*, defaults to `None`):
132
133
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
Steven Liu's avatar
Steven Liu committed
134
        time_embedding_type (`str`, *optional*, defaults to `positional`):
135
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Steven Liu's avatar
Steven Liu committed
136
        time_embedding_dim (`int`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
137
            An optional override for the dimension of the projected time embedding.
Steven Liu's avatar
Steven Liu committed
138
139
140
141
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
142
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
Steven Liu's avatar
Steven Liu committed
143
144
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
145
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
146
147
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
Steven Liu's avatar
Steven Liu committed
148
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
149
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
150
151
152
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
Steven Liu's avatar
Steven Liu committed
153
154
155
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
Kashif Rasul's avatar
Kashif Rasul committed
156
157
    """

158
159
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
163
164
165
166
167
168
169
170
171
172
173
174
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
175
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
176
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
177
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
178
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
179
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
180
181
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
182
        dropout: float = 0.0,
Sid Sahai's avatar
Sid Sahai committed
183
        act_fn: str = "silu",
184
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
185
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
186
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
187
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
William Berman's avatar
William Berman committed
188
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
189
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
190
        attention_head_dim: Union[int, Tuple[int]] = 8,
191
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
192
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
193
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
194
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
195
        addition_embed_type: Optional[str] = None,
196
        addition_time_embed_dim: Optional[int] = None,
197
        num_class_embeds: Optional[int] = None,
198
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
199
        resnet_time_scale_shift: str = "default",
200
201
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
202
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
203
        time_embedding_dim: Optional[int] = None,
204
        time_embedding_act_fn: Optional[str] = None,
205
206
207
208
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
209
        projection_class_embeddings_input_dim: Optional[int] = None,
210
        attention_type: str = "default",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
211
        class_embeddings_concat: bool = False,
212
        mid_block_only_cross_attention: Optional[bool] = None,
213
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
214
        addition_embed_type_num_heads=64,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
219
    ):
        super().__init__()

        self.sample_size = sample_size

220
221
222
223
224
        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

225
226
227
228
229
230
231
232
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

249
250
251
252
253
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
254
255
256
257
258
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
259
260
261
262
263
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

264
265
266
267
268
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
269
        # input
270
271
272
273
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
274
275

        # time
276
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
277
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
278
279
280
281
282
283
284
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
285
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
286
287
288
289
290

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
291
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
292
            )
Patrick von Platen's avatar
Patrick von Platen committed
293

294
295
296
297
298
299
300
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
301

YiYi Xu's avatar
YiYi Xu committed
302
303
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
304
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
305
306
307
308
309
310
311
312
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
313
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
314
315
316
317
318
319
320
321
322
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
323
324
325
326
327
328
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
329
330
331
332
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
333
334
335
        else:
            self.encoder_hid_proj = None

336
        # class embedding
Will Berman's avatar
Will Berman committed
337
        if class_embed_type is None and num_class_embeds is not None:
338
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
339
        elif class_embed_type == "timestep":
340
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
341
342
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
343
344
345
346
347
348
349
350
351
352
353
354
355
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
356
357
358
359
360
361
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
362
363
        else:
            self.class_embedding = None
364

Patrick von Platen's avatar
Patrick von Platen committed
365
366
367
368
369
370
371
372
373
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
374
375
376
377
378
379
380
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
381
382
383
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
YiYi Xu's avatar
YiYi Xu committed
384
385
386
387
388
389
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
Patrick von Platen's avatar
Patrick von Platen committed
390
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
391
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
392

393
394
395
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
396
            self.time_embed_act = get_activation(time_embedding_act_fn)
397

Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

401
        if isinstance(only_cross_attention, bool):
402
403
404
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

405
406
            only_cross_attention = [only_cross_attention] * len(down_block_types)

407
408
409
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

410
411
412
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
413
414
415
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
416
417
418
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

419
420
421
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

422
423
424
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
425
426
427
428
429
430
431
432
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
433
434
435
436
437
438
439
440
441
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
442
                num_layers=layers_per_block[i],
443
                transformer_layers_per_block=transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
444
445
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
446
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
447
448
449
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
450
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
451
                cross_attention_dim=cross_attention_dim[i],
452
                num_attention_heads=num_attention_heads[i],
Patrick von Platen's avatar
Patrick von Platen committed
453
                downsample_padding=downsample_padding,
454
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
455
                use_linear_projection=use_linear_projection,
456
                only_cross_attention=only_cross_attention[i],
457
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
458
                resnet_time_scale_shift=resnet_time_scale_shift,
459
                attention_type=attention_type,
460
461
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
462
                cross_attention_norm=cross_attention_norm,
463
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
464
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
468
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
469
470
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
471
                transformer_layers_per_block=transformer_layers_per_block[-1],
Will Berman's avatar
Will Berman committed
472
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
473
                temb_channels=blocks_time_embed_dim,
474
                dropout=dropout,
Will Berman's avatar
Will Berman committed
475
476
477
478
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
479
                cross_attention_dim=cross_attention_dim[-1],
480
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
481
482
483
484
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
485
                attention_type=attention_type,
Will Berman's avatar
Will Berman committed
486
487
488
489
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
490
                temb_channels=blocks_time_embed_dim,
491
                dropout=dropout,
Will Berman's avatar
Will Berman committed
492
493
494
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
495
                cross_attention_dim=cross_attention_dim[-1],
496
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
497
498
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
499
                skip_time_act=resnet_skip_time_act,
500
                only_cross_attention=mid_block_only_cross_attention,
501
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
502
            )
503
504
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
505
506
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
507

508
509
510
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
511
512
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
513
        reversed_num_attention_heads = list(reversed(num_attention_heads))
514
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
515
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
516
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
517
        only_cross_attention = list(reversed(only_cross_attention))
518

Patrick von Platen's avatar
Patrick von Platen committed
519
520
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
521
522
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
523
524
525
526
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

527
528
529
530
531
532
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535

            up_block = get_up_block(
                up_block_type,
536
                num_layers=reversed_layers_per_block[i] + 1,
537
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
541
                temb_channels=blocks_time_embed_dim,
542
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
543
544
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
545
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
546
                cross_attention_dim=reversed_cross_attention_dim[i],
547
                num_attention_heads=reversed_num_attention_heads[i],
548
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
549
                use_linear_projection=use_linear_projection,
550
                only_cross_attention=only_cross_attention[i],
551
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
552
                resnet_time_scale_shift=resnet_time_scale_shift,
553
                attention_type=attention_type,
554
555
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
556
                cross_attention_norm=cross_attention_norm,
557
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
558
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
559
560
561
562
563
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
564
565
566
567
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
568

569
            self.conv_act = get_activation(act_fn)
570

571
572
573
574
575
576
577
578
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
579

580
        if attention_type in ["gated", "gated-text-image"]:
581
582
583
584
585
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]
586
587
588
589
590

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = PositionNet(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )
591

592
    @property
Patrick von Platen's avatar
Patrick von Platen committed
593
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
594
595
596
597
598
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
599
        # set recursively
600
601
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
602
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
603
604
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
605
606
607
608
609
610
611
612
613
614
615

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
616
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
617
        r"""
Steven Liu's avatar
Steven Liu committed
618
619
        Sets the attention processor to use to compute attention.

620
        Parameters:
Steven Liu's avatar
Steven Liu committed
621
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
622
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
623
624
625
626
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
627
628
629
630
631
632
633
634
635
636
637

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
638
            if hasattr(module, "set_processor"):
639
640
641
642
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
643

644
645
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
646

647
648
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
649

650
651
652
653
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
654
655
656
657
658
659
660
661
662
663
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)
664

665
    def set_attention_slice(self, slice_size):
666
667
        r"""
        Enable sliced attention computation.
668

Steven Liu's avatar
Steven Liu committed
669
670
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
671

672
673
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
674
675
676
677
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
678
679
680
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
681
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
682
683
684
685
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
686
                fn_recursive_retrieve_sliceable_dims(child)
687
688
689

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
690
            fn_recursive_retrieve_sliceable_dims(module)
691

Alexander Pivovarov's avatar
Alexander Pivovarov committed
692
        num_sliceable_layers = len(sliceable_head_dims)
693
694
695
696
697
698
699

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
700
            slice_size = num_sliceable_layers * [1]
701

Alexander Pivovarov's avatar
Alexander Pivovarov committed
702
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
703
704
705
706
707
708

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
729

730
    def _set_gradient_checkpointing(self, module, value=False):
731
        if hasattr(module, "gradient_checkpointing"):
732
733
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
734
735
736
737
738
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
739
        class_labels: Optional[torch.Tensor] = None,
740
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
741
        attention_mask: Optional[torch.Tensor] = None,
742
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
743
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
744
745
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
746
        encoder_attention_mask: Optional[torch.Tensor] = None,
747
748
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
749
        r"""
Steven Liu's avatar
Steven Liu committed
750
751
        The [`UNet2DConditionModel`] forward method.

Kashif Rasul's avatar
Kashif Rasul committed
752
        Args:
Steven Liu's avatar
Steven Liu committed
753
754
755
756
757
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
758
            encoder_attention_mask (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
759
760
761
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
Kashif Rasul's avatar
Kashif Rasul committed
762
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
763
764
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
765
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
766
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
767
768
769
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
Kashif Rasul's avatar
Kashif Rasul committed
770
771
772

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
773
774
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
Kashif Rasul's avatar
Kashif Rasul committed
775
        """
776
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
777
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
778
779
780
781
782
783
784
785
786
787
788
789
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

790
791
792
793
794
795
796
797
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
798
        if attention_mask is not None:
799
800
801
802
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
803
804
805
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

806
807
808
809
810
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
811
812
813
814
815
816
817
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
818
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
819
820
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
821
            if isinstance(timestep, float):
822
823
824
825
826
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
827
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
828

829
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
830
        timesteps = timesteps.expand(sample.shape[0])
831

Patrick von Platen's avatar
Patrick von Platen committed
832
        t_emb = self.time_proj(timesteps)
833

834
        # `Timesteps` does not contain any weights and will always return f32 tensors
835
836
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
837
        t_emb = t_emb.to(dtype=sample.dtype)
838
839

        emb = self.time_embedding(t_emb, timestep_cond)
840
        aug_emb = None
Patrick von Platen's avatar
Patrick von Platen committed
841

Will Berman's avatar
Will Berman committed
842
        if self.class_embedding is not None:
843
844
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
845
846
847
848

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

849
850
851
852
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

853
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
854
855
856
857
858

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
859

Patrick von Platen's avatar
Patrick von Platen committed
860
861
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
862
        elif self.config.addition_embed_type == "text_image":
YiYi Xu's avatar
YiYi Xu committed
863
            # Kandinsky 2.1 - style
YiYi Xu's avatar
YiYi Xu committed
864
865
866
867
868
869
870
871
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
872
        elif self.config.addition_embed_type == "text_time":
873
            # SDXL - style
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
YiYi Xu's avatar
YiYi Xu committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)
908
909

        emb = emb + aug_emb if aug_emb is not None else emb
Patrick von Platen's avatar
Patrick von Platen committed
910

911
912
913
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
914
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
915
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
916
917
918
919
920
921
922
923
924
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
YiYi Xu's avatar
YiYi Xu committed
925
926
927
928
929
930
931
932
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
Patrick von Platen's avatar
Patrick von Platen committed
933
934
935
        # 2. pre-process
        sample = self.conv_in(sample)

936
937
938
939
940
941
        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

Patrick von Platen's avatar
Patrick von Platen committed
942
        # 3. down
943
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
Will Berman's avatar
Will Berman committed
944
945
946
947

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None

Patrick von Platen's avatar
Patrick von Platen committed
948
949
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
950
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Will Berman's avatar
Will Berman committed
951
952
953
954
955
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)

Patrick von Platen's avatar
Patrick von Platen committed
956
                sample, res_samples = downsample_block(
957
958
959
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
960
                    attention_mask=attention_mask,
961
                    cross_attention_kwargs=cross_attention_kwargs,
962
                    encoder_attention_mask=encoder_attention_mask,
Will Berman's avatar
Will Berman committed
963
                    **additional_residuals,
Patrick von Platen's avatar
Patrick von Platen committed
964
965
                )
            else:
966
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
967

Will Berman's avatar
Will Berman committed
968
969
970
                if is_adapter and len(down_block_additional_residuals) > 0:
                    sample += down_block_additional_residuals.pop(0)

Patrick von Platen's avatar
Patrick von Platen committed
971
972
            down_block_res_samples += res_samples

Will Berman's avatar
Will Berman committed
973
        if is_controlnet:
974
975
976
977
978
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
979
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
980
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
981
982
983

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
984
        # 4. mid
985
986
987
988
989
990
991
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
992
                encoder_attention_mask=encoder_attention_mask,
993
            )
994
995
996
997
998
999
1000
            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_block_additional_residuals) > 0
                and sample.shape == down_block_additional_residuals[0].shape
            ):
                sample += down_block_additional_residuals.pop(0)
Patrick von Platen's avatar
Patrick von Platen committed
1001

Will Berman's avatar
Will Berman committed
1002
        if is_controlnet:
1003
            sample = sample + mid_block_additional_residual
1004

Patrick von Platen's avatar
Patrick von Platen committed
1005
        # 5. up
1006
1007
1008
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
1011
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

1012
1013
1014
1015
1016
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

1017
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
1018
1019
1020
1021
1022
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
1023
                    cross_attention_kwargs=cross_attention_kwargs,
1024
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
1025
                    attention_mask=attention_mask,
1026
                    encoder_attention_mask=encoder_attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
                )
            else:
1029
                sample = upsample_block(
1030
1031
1032
1033
1034
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    scale=lora_scale,
1035
                )
1036

Patrick von Platen's avatar
Patrick von Platen committed
1037
        # 6. post-process
1038
1039
1040
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
1041
1042
        sample = self.conv_out(sample)

1043
1044
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
1045

1046
        return UNet2DConditionOutput(sample=sample)