"docs/en/get_started/installation.md" did not exist on "1ab29de7eb55e8baa31a339c36dd6035b8d04a71"
scheduling_pndm.py 16.8 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from .scheduling_utils import SchedulerMixin, SchedulerOutput
25
26
27
28


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
31

32
33
34
35
36
37
38
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
39
                     prevent singularities.
40
41
42

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
43
    """
44

45
46
47
48
49
50
51
52
53
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56


class PNDMScheduler(SchedulerMixin, ConfigMixin):
57
58
59
60
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

61
62
63
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
64
    [`~ConfigMixin.from_config`] functions.
65

66
67
68
69
70
71
72
73
74
    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
75
76
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
77
78
79
80
81
82
83
        tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.

    """

84
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
85
86
    def __init__(
        self,
Partho's avatar
Partho committed
87
88
89
90
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
91
        trained_betas: Optional[np.ndarray] = None,
Partho's avatar
Partho committed
92
93
        tensor_format: str = "pt",
        skip_prk_steps: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
94
    ):
95
96
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
Patrick von Platen's avatar
Patrick von Platen committed
97
        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
98
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
99
100
101
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
102
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
103
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
104
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
105
106
107
108
109
110
111
112
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

Patrick von Platen's avatar
Patrick von Platen committed
113
114
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
115
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
119
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
120
        self.counter = 0
121
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
122
123
        self.ets = []

124
125
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
126
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
127
        self._offset = 0
128
129
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
130
        self.timesteps = None
131
132
133

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
134

Partho's avatar
Partho committed
135
    def set_timesteps(self, num_inference_steps: int, offset: int = 0) -> torch.FloatTensor:
136
137
138
139
140
141
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
Nathan Lambert's avatar
Nathan Lambert committed
142
143
            offset (`int`):
                optional value to shift timestep values up by. A value of 1 is used in stable diffusion for inference.
144
        """
145
        self.num_inference_steps = num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
146
        self._timesteps = list(
Nathan Lambert's avatar
Nathan Lambert committed
147
148
            range(0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps)
        )
149
        self._offset = offset
150
        self._timesteps = np.array([t + self._offset for t in self._timesteps])
151
152
153
154
155

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
156
            self.prk_timesteps = np.array([])
157
158
159
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
160
161
162
163
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
164
165
166
167
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
168

169
        self.timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
Patrick von Platen's avatar
Patrick von Platen committed
170

171
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
172
        self.counter = 0
173
        self.set_format(tensor_format=self.tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
174

Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
178
179
    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
180
181
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
182
183
184
185
186
187
188
189
190
191
192
193
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
194

195
        Returns:
196
197
198
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
199
200

        """
201
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
202
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
203
        else:
204
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
205

206
207
    def step_prk(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
208
        model_output: Union[torch.FloatTensor, np.ndarray],
209
210
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
211
212
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
213
214
215
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
216
217
218
219
220
221
222
223
224

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
225
226
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
227

Nathan Lambert's avatar
Nathan Lambert committed
228
        """
229
230
231
232
233
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
        prev_timestep = max(timestep - diff_to_prev, self.prk_timesteps[-1])
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
237

Patrick von Platen's avatar
Patrick von Platen committed
238
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
239
240
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
241
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
242
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
243
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
244
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
245
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
246
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
247
248
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
249

Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
253
254
255
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

256
257
258
259
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
260

261
262
    def step_plms(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
263
        model_output: Union[torch.FloatTensor, np.ndarray],
264
265
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
266
267
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
268
269
270
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
271
272
273
274
275
276
277
278
279

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
280
281
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
282

Nathan Lambert's avatar
Nathan Lambert committed
283
        """
284
285
286
287
288
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

289
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
290
291
292
293
294
295
296
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
297
        prev_timestep = max(timestep - self.config.num_train_timesteps // self.num_inference_steps, 0)
Patrick von Platen's avatar
Patrick von Platen committed
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        if self.counter != 1:
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
318

Patrick von Platen's avatar
Patrick von Platen committed
319
320
321
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

322
323
324
325
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
326

Patrick von Platen's avatar
Patrick von Platen committed
327
    def _get_prev_sample(self, sample, timestep, timestep_prev, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330
331
332
333
334
335
336
337
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
338
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
339
        # prev_sample -> x_(t−δ)
340
341
        alpha_prod_t = self.alphas_cumprod[timestep + 1 - self._offset]
        alpha_prod_t_prev = self.alphas_cumprod[timestep_prev + 1 - self._offset]
Patrick von Platen's avatar
Patrick von Platen committed
342
343
344
345
346
347
348
349
350
351
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
352
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
353
354
355
356
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
357
358
359
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
360
361

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
362

Partho's avatar
Partho committed
363
364
365
366
367
368
    def add_noise(
        self,
        original_samples: Union[torch.FloatTensor, np.ndarray],
        noise: Union[torch.FloatTensor, np.ndarray],
        timesteps: Union[torch.IntTensor, np.ndarray],
    ) -> torch.Tensor:
369
370
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.alphas_cumprod.device)
371
372
373
374
375
376
377
378
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
379
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
380
        return self.config.num_train_timesteps