test_pipelines.py 38.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
import tempfile
20
import tracemalloc
21
22
23
24
25
import unittest

import numpy as np
import torch

26
import accelerate
27
import PIL
28
import transformers
29
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
35
36
37
38
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
39
40
    OnnxStableDiffusionImg2ImgPipeline,
    OnnxStableDiffusionInpaintPipeline,
41
    OnnxStableDiffusionPipeline,
42
43
44
45
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
46
    StableDiffusionImg2ImgPipeline,
47
    StableDiffusionInpaintPipelineLegacy,
48
    StableDiffusionPipeline,
49
    UNet2DConditionModel,
50
    UNet2DModel,
51
    VQModel,
52
    logging,
53
54
)
from diffusers.pipeline_utils import DiffusionPipeline
55
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
56
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, load_image, slow, torch_device
57
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
58
from packaging import version
59
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
60
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
61
62
63
64
65


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
66
67
68
69
70
71
72
73
74
75
76
77
78
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
79
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
80
81
82
83
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
84
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
85
86
87
88
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
121
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
125
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
126
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
133
134
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
135
        )
136
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
141
142
143
144
145
146
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


147
class PipelineFastTests(unittest.TestCase):
148
149
150
151
152
153
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
266
        scheduler = DDIMScheduler()
267
268
269

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
270
        ddpm.set_progress_bar_config(disable=None)
271

272
273
274
275
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

276
        generator = torch.manual_seed(0)
277
278
279
280
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
281
282

        image_slice = image[0, -3:, -3:, -1]
283
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
284
285
286
287
288

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
289
290
291
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
292
293
294

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
295
        scheduler = PNDMScheduler()
296
297
298

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
299
        pndm.set_progress_bar_config(disable=None)
300
301
302
303

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

304
        generator = torch.manual_seed(0)
305
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
306
307

        image_slice = image[0, -3:, -3:, -1]
308
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
309
310
311
312

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
313
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
314
315
316

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
317
        scheduler = DDIMScheduler()
318
319
320
321
322
323
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
324
        ldm.set_progress_bar_config(disable=None)
325
326

        prompt = "A painting of a squirrel eating a burger"
327
328
329
330

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
331
332
333
            _ = ldm(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
            ).images
334

335
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
336
337
338
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
        ).images
339

340
341
342
343
344
345
346
347
348
349
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

350
        image_slice = image[0, -3:, -3:, -1]
351
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
352
353
354
355

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
356
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
357
358
359

    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
360
        scheduler = ScoreSdeVeScheduler()
361
362
363

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
364
        sde_ve.set_progress_bar_config(disable=None)
365

366
367
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
368

369
370
371
372
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
373
374

        image_slice = image[0, -3:, -3:, -1]
375
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
376
377
378
379

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
380
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
381
382
383

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
384
        scheduler = DDIMScheduler()
385
386
387
388
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
389
        ldm.set_progress_bar_config(disable=None)
390

391
392
393
394
395
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

396
        generator = torch.manual_seed(0)
397
398
399
400
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
401
402

        image_slice = image[0, -3:, -3:, -1]
403
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
404
405
406
407

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
408
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
409
410
411

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
412
        scheduler = KarrasVeScheduler()
413
414
415

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
416
        pipe.set_progress_bar_config(disable=None)
417
418

        generator = torch.manual_seed(0)
419
420
421
422
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
423
424

        image_slice = image[0, -3:, -3:, -1]
425
426
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

427
428
429
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
430
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
431

432
433
    def test_components(self):
        """Test that components property works correctly"""
434
        unet = self.dummy_cond_unet
435
        scheduler = PNDMScheduler(skip_prk_steps=True)
436
437
438
439
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

440
441
442
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
443
444

        # make sure here that pndm scheduler skips prk
445
        inpaint = StableDiffusionInpaintPipelineLegacy(
446
447
448
449
450
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
451
            safety_checker=None,
452
            feature_extractor=self.dummy_extractor,
453
454
455
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
456
457

        prompt = "A painting of a squirrel eating a burger"
458
459
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image_inpaint = inpaint(
460
461
462
463
464
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
465
466
467
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
468
469
470
471
472
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
473
474
475
        ).images
        image_text2img = text2img(
            [prompt],
476
477
478
            generator=generator,
            num_inference_steps=2,
            output_type="np",
479
        ).images
480

481
482
483
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
484

485

486
class PipelineTesterMixin(unittest.TestCase):
487
488
489
490
491
492
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

514
515
516
517
518
519
520
521
522
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
                DiffusionPipeline.from_pretrained(model_id, not_used=True, cache_dir=tmpdirname, force_download=True)

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

523
524
525
526
527
528
529
530
531
532
533
534
535
536
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
537
        ddpm.to(torch_device)
538
        ddpm.set_progress_bar_config(disable=None)
539
540
541
542

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
543
            new_ddpm.to(torch_device)
544
545

        generator = torch.manual_seed(0)
546
        image = ddpm(generator=generator, output_type="numpy").images
547

548
        generator = generator.manual_seed(0)
549
        new_image = new_ddpm(generator=generator, output_type="numpy").images
550
551
552
553
554
555
556

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

557
        scheduler = DDPMScheduler(num_train_timesteps=10)
558

559
560
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
561
        ddpm.set_progress_bar_config(disable=None)
562
563
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
564
        ddpm_from_hub.set_progress_bar_config(disable=None)
565
566

        generator = torch.manual_seed(0)
567
        image = ddpm(generator=generator, output_type="numpy").images
568

569
        generator = generator.manual_seed(0)
570
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
571
572
573
574
575
576
577

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

578
579
        scheduler = DDPMScheduler(num_train_timesteps=10)

580
581
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
582
583
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
584
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
585

586
587
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
588
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
589
590

        generator = torch.manual_seed(0)
591
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
592

593
        generator = generator.manual_seed(0)
594
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
595
596
597
598
599
600
601
602

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
603
        pipe.to(torch_device)
604
        pipe.set_progress_bar_config(disable=None)
605
606

        generator = torch.manual_seed(0)
607
        images = pipe(generator=generator, output_type="numpy").images
608
609
610
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

611
        images = pipe(generator=generator, output_type="pil").images
612
613
614
615
616
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
617
        images = pipe(generator=generator).images
618
619
620
621
622
623
624
625
626
627
628
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
629
        ddpm.to(torch_device)
630
        ddpm.set_progress_bar_config(disable=None)
631
632

        generator = torch.manual_seed(0)
633
        image = ddpm(generator=generator, output_type="numpy").images
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
649
        ddpm.to(torch_device)
650
        ddpm.set_progress_bar_config(disable=None)
651
652

        generator = torch.manual_seed(0)
653
        image = ddpm(generator=generator, output_type="numpy").images
654
655
656
657
658
659
660
661
662
663
664
665

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
666
        scheduler = DDIMScheduler()
667
668

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
669
        ddim.to(torch_device)
670
        ddim.set_progress_bar_config(disable=None)
671
672

        generator = torch.manual_seed(0)
673
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
674
675
676
677
678
679
680
681
682
683
684
685

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
686
        scheduler = PNDMScheduler()
687
688

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
689
        pndm.to(torch_device)
690
        pndm.set_progress_bar_config(disable=None)
691
        generator = torch.manual_seed(0)
692
        image = pndm(generator=generator, output_type="numpy").images
693
694
695
696
697
698
699
700
701
702

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
703
        ldm.to(torch_device)
704
        ldm.set_progress_bar_config(disable=None)
705
706
707

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
708
709
710
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
        ).images
711
712
713
714
715
716
717
718
719
720

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
721
        ldm.to(torch_device)
722
        ldm.set_progress_bar_config(disable=None)
723
724
725

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
726
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
742
        sde_ve.to(torch_device)
743
        sde_ve.set_progress_bar_config(disable=None)
744

745
746
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
747
748
749

        image_slice = image[0, -3:, -3:, -1]

750
        assert image.shape == (1, 256, 256, 3)
751

752
753
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
754
755

    @slow
756
757
758
759
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
        ldm.to(torch_device)
        ldm.set_progress_bar_config(disable=None)
760

761
762
        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
763

764
        image_slice = image[0, -3:, -3:, -1]
765

766
767
768
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
769
770

    @slow
771
772
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"
773

774
775
776
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
777

778
779
780
781
782
783
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
784

785
786
        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
787

788
789
        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
790

791
792
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
793

794
795
796
    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"
797

798
799
800
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
801

802
803
804
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
805

806
807
808
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
809

810
811
812
813
814
815
816
        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
817

818
819
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1
820

821
822
823
824
825
826
827
    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler()

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
828
829
830
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

831
832
        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
833

834
835
836
837
        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
838
839
840

    @slow
    def test_stable_diffusion_onnx(self):
841
        sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
842
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
843
        )
844
845
846

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
847
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np")
848
849
850
851
852
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
853
        expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
854
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
855

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    @slow
    def test_stable_diffusion_img2img_onnx(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        np.random.seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            num_inference_steps=8,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 383:386, -1]

        assert images.shape == (1, 512, 768, 3)
883
884
885
        expected_slice = np.array([0.4830, 0.5242, 0.5603, 0.5016, 0.5131, 0.5111, 0.4928, 0.5025, 0.5055])
        # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
        assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
886
887
888
889
890
891
892
893
894
895
896
897
898

    @slow
    def test_stable_diffusion_inpaint_onnx(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )

        pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
899
            "runwayml/stable-diffusion-inpainting", revision="onnx", provider="CPUExecutionProvider"
900
901
902
903
904
905
906
907
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A red cat sitting on a park bench"

        np.random.seed(0)
        output = pipe(
            prompt=prompt,
908
            image=init_image,
909
910
911
912
913
914
915
916
917
            mask_image=mask_image,
            guidance_scale=7.5,
            num_inference_steps=8,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 255:258, -1]

        assert images.shape == (1, 512, 512, 3)
918
        expected_slice = np.array([0.2951, 0.2955, 0.2922, 0.2036, 0.1977, 0.2279, 0.1716, 0.1641, 0.1799])
919
920
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

921
922
923
924
925
926
927
928
929
930
931
932
    @slow
    def test_stable_diffusion_onnx_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
933
                    [-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592]
934
935
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
936
937
938
939
940
941
942
            elif step == 5:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.4776, -0.0119, -0.8519, -0.0275, -0.9764, 0.9820, -0.3843, 0.3788, 1.2264]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
943
944
945

        test_callback_fn.has_been_called = False

946
        pipe = OnnxStableDiffusionPipeline.from_pretrained(
947
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
948
949
950
951
952
953
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "Andromeda galaxy in a bottle"

        np.random.seed(0)
954
        pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1)
955
        assert test_callback_fn.has_been_called
956
        assert number_of_steps == 6
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_works(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        model_id = "CompVis/stable-diffusion-v1-4"
        _ = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        ).to(torch_device)

    @slow
    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_reduces_memory_footprint(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        pipeline_id = "CompVis/stable-diffusion-v1-4"

        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        pipeline_normal_load = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        )
        pipeline_normal_load.to(torch_device)
        _, peak_normal = tracemalloc.get_traced_memory()
        tracemalloc.stop()

        del pipeline_normal_load
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        _ = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        )
        _, peak_accelerate = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal