scheduling_pndm.py 18.2 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
25
from .scheduling_utils import SchedulerMixin, SchedulerOutput
26
27
28
29


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

33
34
35
36
37
38
39
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
40
                     prevent singularities.
41
42
43

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
44
    """
45

46
47
48
49
50
51
52
53
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
54
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57


class PNDMScheduler(SchedulerMixin, ConfigMixin):
58
59
60
61
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

62
63
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
64
65
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
66

67
68
69
70
71
72
73
74
75
    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
76
77
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
78
79
80
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
81
82
83
84
85
86
87
88
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
89
90
91

    """

92
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
93
    order = 1
94

95
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
96
97
    def __init__(
        self,
Partho's avatar
Partho committed
98
99
100
101
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
102
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
103
        skip_prk_steps: bool = False,
104
105
        set_alpha_to_one: bool = False,
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
106
    ):
107
        if trained_betas is not None:
108
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
109
        elif beta_schedule == "linear":
110
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
111
112
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
113
114
115
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
116
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
117
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
118
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
119
120
121
122
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
123
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
124

125
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
126

127
128
129
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

Patrick von Platen's avatar
Patrick von Platen committed
130
131
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
132
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
136
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
137
        self.counter = 0
138
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
139
140
        self.ets = []

141
142
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
143
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
144
145
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
146
        self.timesteps = None
147

148
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
149
150
151
152
153
154
155
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
156

157
        self.num_inference_steps = num_inference_steps
158
159
160
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
161
        self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
162
        self._timesteps += self.config.steps_offset
163
164
165
166
167

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
168
            self.prk_timesteps = np.array([])
169
170
171
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
172
173
174
175
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
176
177
178
179
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
180

181
182
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
183

184
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
185
        self.counter = 0
Patrick von Platen's avatar
Patrick von Platen committed
186

Patrick von Platen's avatar
Patrick von Platen committed
187
188
    def step(
        self,
189
        model_output: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
190
        timestep: int,
191
        sample: torch.FloatTensor,
192
193
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
194
195
196
197
198
199
200
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
201
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
202
            timestep (`int`): current discrete timestep in the diffusion chain.
203
            sample (`torch.FloatTensor`):
204
205
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
206

207
        Returns:
208
209
210
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
211
212

        """
213
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
214
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
215
        else:
216
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
217

218
219
    def step_prk(
        self,
220
        model_output: torch.FloatTensor,
221
        timestep: int,
222
        sample: torch.FloatTensor,
223
224
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
225
226
227
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
228
229

        Args:
230
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
231
            timestep (`int`): current discrete timestep in the diffusion chain.
232
            sample (`torch.FloatTensor`):
233
234
235
236
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
237
238
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
239

Nathan Lambert's avatar
Nathan Lambert committed
240
        """
241
242
243
244
245
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
246
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
247
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
248
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
249

Patrick von Platen's avatar
Patrick von Platen committed
250
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
251
252
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
253
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
254
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
255
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
256
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
257
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
258
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
259
260
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
261

Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
265
266
267
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

268
269
270
271
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
272

273
274
    def step_plms(
        self,
275
        model_output: torch.FloatTensor,
276
        timestep: int,
277
        sample: torch.FloatTensor,
278
279
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
280
281
282
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
283
284

        Args:
285
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
286
            timestep (`int`): current discrete timestep in the diffusion chain.
287
            sample (`torch.FloatTensor`):
288
289
290
291
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
292
293
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
294

Nathan Lambert's avatar
Nathan Lambert committed
295
        """
296
297
298
299
300
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

301
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
302
303
304
305
306
307
308
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

309
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
310

311
        if self.counter != 1:
312
            self.ets = self.ets[-3:]
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
331

Patrick von Platen's avatar
Patrick von Platen committed
332
333
334
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

335
336
337
338
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
339

340
341
342
343
344
345
346
347
348
349
350
351
352
    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

353
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
364
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
365
        # prev_sample -> x_(t−δ)
366
367
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
368
369
370
371
372
373
374
375
376
377
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
378
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
379
380
381
382
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
386
387

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
388

Partho's avatar
Partho committed
389
390
    def add_noise(
        self,
391
392
393
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
Partho's avatar
Partho committed
394
    ) -> torch.Tensor:
395
396
397
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
398

399
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
400
401
402
403
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

404
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
405
406
407
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
408
409
410
411

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
412
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
413
        return self.config.num_train_timesteps