resnet_run_loop.py 23.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Taylor Robie's avatar
Taylor Robie committed
26
import math
27
28
import os

29
# pylint: disable=g-bad-import-order
30
from absl import flags
31
import tensorflow as tf
32
33

from official.resnet import resnet_model
34
from official.utils.flags import core as flags_core
35
from official.utils.export import export
36
37
from official.utils.logs import hooks_helper
from official.utils.logs import logger
38
from official.utils.misc import distribution_utils
39
from official.utils.misc import model_helpers
40
# pylint: enable=g-bad-import-order
41
42
43
44
45
46


################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
Taylor Robie's avatar
Taylor Robie committed
47
48
                           parse_record_fn, num_epochs=1, num_gpus=None,
                           examples_per_epoch=None):
Karmel Allison's avatar
Karmel Allison committed
49
  """Given a Dataset with raw records, return an iterator over the records.
50
51
52
53
54
55
56
57
58
59
60

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
Taylor Robie's avatar
Taylor Robie committed
61
62
    num_gpus: The number of gpus used for training.
    examples_per_epoch: The number of examples in an epoch.
63
64
65
66

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
67

68
69
70
71
72
73
74
75
76
77
78
79
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

Taylor Robie's avatar
Taylor Robie committed
80
81
82
83
84
85
86
87
88
89
  if is_training and num_gpus and examples_per_epoch:
    total_examples = num_epochs * examples_per_epoch
    # Force the number of batches to be divisible by the number of devices.
    # This prevents some devices from receiving batches while others do not,
    # which can lead to a lockup. This case will soon be handled directly by
    # distribution strategies, at which point this .take() operation will no
    # longer be needed.
    total_batches = total_examples // batch_size // num_gpus * num_gpus
    dataset.take(total_batches * batch_size)

90
91
92
93
94
95
96
  # Parse the raw records into images and labels. Testing has shown that setting
  # num_parallel_batches > 1 produces no improvement in throughput, since
  # batch_size is almost always much greater than the number of CPU cores.
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(
          lambda value: parse_record_fn(value, is_training),
          batch_size=batch_size,
97
          num_parallel_batches=1,
98
          drop_remainder=False))
99
100
101
102

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
103
104
105
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
106
  dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
107
108
109
110

  return dataset


Toby Boyd's avatar
Toby Boyd committed
111
112
113
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.
114

Toby Boyd's avatar
Toby Boyd committed
115
116
117
118
  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
  tunning the full input pipeline.
119
120
121
122
123
124
125

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
Toby Boyd's avatar
Toby Boyd committed
126
    dtype: Data type for features/images.
127
128
129
130
131

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Toby Boyd's avatar
Toby Boyd committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data
152
153
154
155
156
157
158
159

  return input_fn


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
160
161
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
    base_lr=0.1, warmup=False):
162
163
164
165
166
167
168
169
170
171
172
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
173
174
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
175
176
    base_lr: Initial learning rate scaled based on batch_denom.
    warmup: Run a 5 epoch warmup to the initial lr.
177
178
179
180
181
  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
182
  initial_learning_rate = base_lr * batch_size / batch_denom
183
184
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
185
186
187
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
188
189
190
191
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
192
193
194
195
196
197
198
199
200
    """Builds scaled learning rate function with 5 epoch warm up."""
    lr = tf.train.piecewise_constant(global_step, boundaries, vals)
    if warmup:
      warmup_steps = int(batches_per_epoch * 5)
      warmup_lr = (
          initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
              warmup_steps, tf.float32))
      return tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
    return lr
201
202
203
204
205
206

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
207
                    data_format, resnet_version, loss_scale,
Zac Wellmer's avatar
Zac Wellmer committed
208
209
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
                    fine_tune=False):
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
233
234
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
235
236
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
237
238
239
240
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
241
    dtype: the TensorFlow dtype to use for calculations.
Zac Wellmer's avatar
Zac Wellmer committed
242
    fine_tune: If True only train the dense layers(final layers).
243
244
245
246
247
248
249
250

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)
Toby Boyd's avatar
Toby Boyd committed
251
  # TODO(tobyboyd): Add cast as part of input pipeline on cpu and remove.
252
253
  features = tf.cast(features, dtype)

254
255
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
256

257
258
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

259
260
261
262
263
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

264
265
266
267
268
269
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
270
271
272
273
274
275
276
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
277
278

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
279
280
  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=logits, labels=labels)
281
282
283
284
285
286
287

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
288
289
290
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
291
292

  # Add weight decay to the loss.
293
  l2_loss = weight_decay * tf.add_n(
294
295
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
296
       if loss_filter_fn(v.name)])
297
298
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
299
300
301
302
303
304
305
306
307
308
309
310

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
311
312
        momentum=momentum
    )
313

Zac Wellmer's avatar
Zac Wellmer committed
314
    def _dense_grad_filter(gvs):
315
316
317
318
      """Only apply gradient updates to the final layer.

      This function is used for fine tuning.

Zac Wellmer's avatar
Zac Wellmer committed
319
      Args:
320
        gvs: list of tuples with gradients and variable info
Zac Wellmer's avatar
Zac Wellmer committed
321
      Returns:
322
323
        filtered gradients so that only the dense layer remains
      """
Zac Wellmer's avatar
Zac Wellmer committed
324
325
      return [(g, v) for g, v in gvs if 'dense' in v.name]

326
327
328
329
330
331
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
332
333
334
      if fine_tune:
        scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)

335
336
337
338
339
340
      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
Zac Wellmer's avatar
Zac Wellmer committed
341
342
343
344
      grad_vars = optimizer.compute_gradients(loss)
      if fine_tune:
        grad_vars = _dense_grad_filter(grad_vars)
      minimize_op = optimizer.apply_gradients(grad_vars, global_step)
345

346
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
347
    train_op = tf.group(minimize_op, update_ops)
348
349
350
  else:
    train_op = None

351
  accuracy = tf.metrics.accuracy(labels, predictions['classes'])
352
353
354
355
356
357
  accuracy_top_5 = tf.metrics.mean(tf.nn.in_top_k(predictions=logits,
                                                  targets=labels,
                                                  k=5,
                                                  name='top_5_op'))
  metrics = {'accuracy': accuracy,
             'accuracy_top_5': accuracy_top_5}
358
359
360

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
361
  tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
362
  tf.summary.scalar('train_accuracy', accuracy[1])
363
  tf.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
364
365
366
367
368
369
370
371
372

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


373
374
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
375
376
377
  """Shared main loop for ResNet Models.

  Args:
378
379
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
380
381
382
383
384
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
385
386
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
387
    shape: list of ints representing the shape of the images used for training.
388
      This is only used if flags_obj.export_dir is passed.
389
  """
Karmel Allison's avatar
Karmel Allison committed
390

391
392
  model_helpers.apply_clean(flags.FLAGS)

393
394
395
396
397
398
399
400
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
401
402
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
403
404
      allow_soft_placement=True)

405
406
  distribution_strategy = distribution_utils.get_distribution_strategy(
      flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg)
407

408
409
  run_config = tf.estimator.RunConfig(
      train_distribute=distribution_strategy, session_config=session_config)
410

Zac Wellmer's avatar
Zac Wellmer committed
411
412
413
414
415
416
417
418
  # initialize our model with all but the dense layer from pretrained resnet
  if flags_obj.pretrained_model_checkpoint_path is not None:
    warm_start_settings = tf.estimator.WarmStartSettings(
        flags_obj.pretrained_model_checkpoint_path,
        vars_to_warm_start='^(?!.*dense)')
  else:
    warm_start_settings = None

419
  classifier = tf.estimator.Estimator(
420
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
Zac Wellmer's avatar
Zac Wellmer committed
421
      warm_start_from=warm_start_settings, params={
422
423
424
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
425
          'resnet_version': int(flags_obj.resnet_version),
426
          'loss_scale': flags_core.get_loss_scale(flags_obj),
Zac Wellmer's avatar
Zac Wellmer committed
427
428
          'dtype': flags_core.get_tf_dtype(flags_obj),
          'fine_tune': flags_obj.fine_tune
429
430
      })

431
432
433
434
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
435
      'resnet_version': flags_obj.resnet_version,
436
437
438
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
  }
439
  if flags_obj.use_synthetic_data:
440
    dataset_name = dataset_name + '-synthetic'
441

442
  benchmark_logger = logger.get_benchmark_logger()
443
444
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
445

446
  train_hooks = hooks_helper.get_train_hooks(
447
      flags_obj.hooks,
448
      model_dir=flags_obj.model_dir,
449
      batch_size=flags_obj.batch_size)
450

Taylor Robie's avatar
Taylor Robie committed
451
  def input_fn_train(num_epochs):
452
453
    return input_function(
        is_training=True, data_dir=flags_obj.data_dir,
454
        batch_size=distribution_utils.per_device_batch_size(
455
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
456
        num_epochs=num_epochs,
Taylor Robie's avatar
Taylor Robie committed
457
        num_gpus=flags_core.get_num_gpus(flags_obj))
458

459
  def input_fn_eval():
460
461
    return input_function(
        is_training=False, data_dir=flags_obj.data_dir,
462
        batch_size=distribution_utils.per_device_batch_size(
463
464
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
        num_epochs=1)
Taylor Robie's avatar
Taylor Robie committed
465

Taylor Robie's avatar
Taylor Robie committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
  if flags_obj.eval_only or not flags_obj.train_epochs:
    # If --eval_only is set, perform a single loop with zero train epochs.
    schedule, n_loops = [0], 1
  else:
    # Compute the number of times to loop while training. All but the last
    # pass will train for `epochs_between_evals` epochs, while the last will
    # train for the number needed to reach `training_epochs`. For instance if
    #   train_epochs = 25 and epochs_between_evals = 10
    # schedule will be set to [10, 10, 5]. That is to say, the loop will:
    #   Train for 10 epochs and then evaluate.
    #   Train for another 10 epochs and then evaluate.
    #   Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
    n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals)
    schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
    schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1])  # over counting.

  for cycle_index, num_train_epochs in enumerate(schedule):
    tf.logging.info('Starting cycle: %d/%d', cycle_index, int(n_loops))

    if num_train_epochs:
      classifier.train(input_fn=lambda: input_fn_train(num_train_epochs),
                       hooks=train_hooks, max_steps=flags_obj.max_train_steps)
488

489
    tf.logging.info('Starting to evaluate.')
490
491
492
493
494

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
495
496
497
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
498
                                       steps=flags_obj.max_train_steps)
499

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
500
    benchmark_logger.log_evaluation_result(eval_results)
501

502
    if model_helpers.past_stop_threshold(
503
        flags_obj.stop_threshold, eval_results['accuracy']):
504
505
      break

506
  if flags_obj.export_dir is not None:
507
508
    # Exports a saved model for the given classifier.
    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
509
510
        shape, batch_size=flags_obj.batch_size)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn)
511
512


513
514
515
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
516
  flags_core.define_performance(num_parallel_calls=False)
517
518
519
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
520

521
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
522
      name='resnet_version', short_name='rv', default='1',
523
      enum_values=['1', '2'],
524
525
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
Zac Wellmer's avatar
Zac Wellmer committed
526
527
528
529
530
531
532
533
534
  flags.DEFINE_bool(
      name='fine_tune', short_name='ft', default=False,
      help=flags_core.help_wrap(
          'If True do not train any parameters except for the final layer.'))
  flags.DEFINE_string(
      name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
      help=flags_core.help_wrap(
          'If not None initialize all the network except the final layer with '
          'these values'))
Taylor Robie's avatar
Taylor Robie committed
535
536
537
538
  flags.DEFINE_boolean(
      name="eval_only", default=False,
      help=flags_core.help_wrap('Skip training and only perform evaluation on '
                                'the latest checkpoint.'))
539

540
541
542
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
543

544
545
546
547
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)