model_training_utils.py 24.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16

17
import json
18
import os
19
import tempfile
20
21

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
22
import tensorflow as tf
23
from tensorflow.python.util import deprecation
24
from official.common import distribute_utils
Zongwei Zhou's avatar
Zongwei Zhou committed
25
from official.staging.training import grad_utils
26

27
28
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
29

30

31
32
33
34
35
36
37
38
39
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
40
41
  """Saves model to with provided checkpoint prefix."""

42
43
44
45
46
47
48
49
50
51
52
53
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
54
55
56
  return


57
58
59
60
61
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
62
63
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
Chenkai Kuang's avatar
Chenkai Kuang committed
64
  iterator = iter(strategy.distribute_datasets_from_function(input_fn))
65
66
67
  return iterator


68
69
70
71
72
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


73
74
75
76
77
78
79
def clip_by_global_norm_callback(grads_and_vars):
  """Performs gradient clipping."""
  grads, variables = zip(*grads_and_vars)
  (clipped_grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
  return zip(clipped_grads, variables)


80
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
81
  """Calculates steps to run on device."""
82
83
84
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
85
86
87
88
89
90
91
92
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


93
def write_txt_summary(training_summary, summary_dir):
94
  """Writes a summary text file to record stats."""
Chen Chen's avatar
Chen Chen committed
95
96
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
97
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
98
99
100
101
102
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


103
@deprecation.deprecated(
104
105
106
    None, 'This function is deprecated and we do not expect adding new '
    'functionalities. Please do not have your code depending '
    'on this library.')
107
108
109
110
111
112
113
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
114
    scale_loss=True,
115
116
117
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
Tianqi Liu's avatar
Tianqi Liu committed
118
    num_eval_per_epoch=1,
119
    steps_per_loop=None,
120
121
122
123
124
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
125
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
126
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
127
128
129
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
Chen Chen's avatar
Chen Chen committed
130
    post_allreduce_callbacks=None,
Zongwei Zhou's avatar
Zongwei Zhou committed
131
132
    train_summary_interval=0,
    allreduce_bytes_per_pack=0):
133
134
135
136
137
138
139
140
141
142
143
144
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
145
146
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
147
148
149
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
150
151
152
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
Tianqi Liu's avatar
Tianqi Liu committed
153
      num_eval_per_epoch: Number of evaluations per epoch.
154
155
156
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
157
158
159
160
161
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
164
      metric_fn: A metrics function that returns either a Keras Metric object or
        a list of Keras Metric objects to record evaluation result using
        evaluation dataset or with training dataset after every epoch.
165
166
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
167
      custom_callbacks: A list of Keras Callbacks objects to run during
168
169
        training. More specifically, `on_train_begin(), on_train_end(),
        on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
Hongkun Yu's avatar
Hongkun Yu committed
170
171
        `on_epoch_end()` methods are invoked during training. Note that some
        metrics may be missing from `logs`.
172
173
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
174
175
176
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
Tianqi Liu's avatar
Tianqi Liu committed
177
178
        checkpint's name is {sub_model_export_name}.ckpt; if None, `sub_model`
        will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
179
180
181
182
183
184
185
186
187
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
Tianqi Liu's avatar
Tianqi Liu committed
188
189
190
191
        invoked in the list order and before gradients are allreduced. With
        mixed precision training, the pre_allreduce_allbacks will be applied on
        scaled_gradients. Default is no callbacks. Only used when
        explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
192
193
194
195
196
197
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
Chen Chen's avatar
Chen Chen committed
198
199
      train_summary_interval: Step interval for training summaries. If the value
        is a negative number, then training summaries are not enabled.
Zongwei Zhou's avatar
Zongwei Zhou committed
200
201
202
203
204
      allreduce_bytes_per_pack: A non-negative integer. Breaks collective
        operations into packs of certain size. If it's zero, all gradients are
        in one pack. Breaking gradient into packs could enable overlap between
        allreduce and backprop computation. This flag only takes effect when
        explicit_allreduce is set to True.'
205
206
207
208
209
210
211
212

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
213
214
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
215
216
217
218
219
220
221
222
223
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
Tianqi Liu's avatar
Tianqi Liu committed
224
225

  steps_between_evals = int(steps_per_epoch / num_eval_per_epoch)
226
227
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
228
                     '`steps_per_epoch` and `train_input_fn` are required '
229
                     'parameters.')
230
231
232
233
  if not steps_per_loop:
    if tf.config.list_logical_devices('TPU'):
      # One can't fully utilize a TPU with steps_per_loop=1, so in this case
      # default users to a more useful value.
Tianqi Liu's avatar
Tianqi Liu committed
234
      steps_per_loop = min(1000, steps_between_evals)
235
236
237
238
    else:
      steps_per_loop = 1
    logging.info('steps_per_loop not specified. Using steps_per_loop=%d',
                 steps_per_loop)
Tianqi Liu's avatar
Tianqi Liu committed
239
  if steps_per_loop > steps_between_evals:
240
    logging.warning(
241
        'steps_per_loop: %d is specified to be greater than '
Tianqi Liu's avatar
Tianqi Liu committed
242
243
244
        ' steps_between_evals: %d, we will use steps_between_evals as'
        ' steps_per_loop.', steps_per_loop, steps_between_evals)
    steps_per_loop = steps_between_evals
245
246
  assert tf.executing_eagerly()

247
248
249
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
250
          'TPUStrategy should not run eagerly as it heavily relies on graph'
251
252
          ' optimization for the distributed system.')

253
  if eval_input_fn and eval_steps is None:
254
    raise ValueError(
255
        '`eval_step` is required when `eval_input_fn ` is not none.')
256
257
258
259
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

260
  total_training_steps = steps_per_epoch * epochs
261
  train_iterator = _get_input_iterator(train_input_fn, strategy)
Tianqi Liu's avatar
Tianqi Liu committed
262
  eval_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
263

264
  with distribute_utils.get_strategy_scope(strategy):
265
266
267
268
269
270
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
271
272
273
274
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

275
276
277
    callback_list = tf.keras.callbacks.CallbackList(
        callbacks=custom_callbacks, model=model)

278
279
280
281
282
283
284
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
285
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
286
287
      logging.info('Loading from checkpoint file completed')

Tianqi Liu's avatar
Tianqi Liu committed
288
    train_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
289
290
291
    eval_metrics = metric_fn() if metric_fn else []
    if not isinstance(eval_metrics, list):
      eval_metrics = [eval_metrics]
292
293
294
295
296
297
298
299
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
300
301
302
303
304
305
306
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
307
    eval_summary_writer = tf.summary.create_file_writer(
308
        os.path.join(summary_dir, 'eval'))
Chen Chen's avatar
Chen Chen committed
309
310
    last_summary_step = 0
    if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
311
312
313
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
314
          os.path.join(summary_dir, 'train'))
315
    else:
Chen Chen's avatar
Chen Chen committed
316
      train_summary_writer = tf.summary.create_noop_writer()
317
318
319
320
321
322
323
324
325
326
327

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
328
329
330
331
332
333
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
334
335
336
337
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
Zongwei Zhou's avatar
Zongwei Zhou committed
338
339
                                                     post_allreduce_callbacks,
                                                     allreduce_bytes_per_pack)
340
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
341
342
343
344
345
346
347
348
349
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
350
      # For reporting, the metric takes the mean of losses.
351
      train_loss_metric.update_state(raw_loss)
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
372
        strategy.run(_replicated_step, args=(next(iterator),))
373

374
375
    def train_single_step(iterator):
      """Performs a distributed training step.
376

377
378
      Args:
        iterator: the distributed iterator of training datasets.
379

380
381
382
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
383
      strategy.run(_replicated_step, args=(next(iterator),))
384

385
386
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
387

388
389
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
390

391
392
393
394
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
395
        return model_outputs, labels
396

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
397
398
399
400
401
402
      outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      outputs)
      labels = tf.nest.map_structure(strategy.experimental_local_results,
                                     labels)
      return outputs, labels
403
404
405
406
407
408

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
409
410
411
412
413
414
415
416
417
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
418
419
420
421
422
423
      # The last batch of the evaluation is often smaller than previous ones.
      # Moreover, in some distributed pieces it might even be empty. Therefore,
      # different from the way training_loss is calculated, it is needed to
      # gather all the logits and labels here to calculate the evaluation loss
      # outside.
      loss_list, loss_weights = list(), list()
424
      for _ in range(eval_steps):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
425
426
427
428
429
430
431
432
433
434
435
436
        outputs, labels = test_step(test_iterator)
        for cur_logits, cur_labels in zip(outputs, labels):
          # This is to handle cases when cur_labels is not a single tensor,
          # but a dict of tensors.
          cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
          if cur_weight != 0:
            loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
            loss_weights.append(cur_weight)
      # The sample_weights are the actual number of examples in each batch,
      # a summation of numbers of examples in each replica if using
      # distributed training.
      eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
437

438
      logs = {}
439
      with eval_summary_writer.as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
440
        for metric in [eval_loss_metric] + eval_metrics + model.metrics:
441
          metric_value = _float_metric_value(metric)
442
          logs[metric.name] = metric_value
443
444
445
446
447
448
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

449
      return logs
450
451

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
452
453
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
454
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
455
456
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
457

458
459
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
Tianqi Liu's avatar
Tianqi Liu committed
460
461
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
462
463
464
465
466
467
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

Tianqi Liu's avatar
Tianqi Liu committed
468
    logs = {}
469
470
    callback_list.on_train_begin()
    while current_step < total_training_steps and not model.stop_training:
471
      if current_step % steps_per_epoch == 0:
Hongkun Yu's avatar
Hongkun Yu committed
472
        callback_list.on_epoch_begin(int(current_step / steps_per_epoch) + 1)
473

474
475
476
477
478
479
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

480
      callback_list.on_batch_begin(current_step)
481
      # Runs several steps in the host while loop.
Tianqi Liu's avatar
Tianqi Liu committed
482
      steps = steps_to_run(current_step, steps_between_evals, steps_per_loop)
483

484
      if tf.config.list_physical_devices('GPU'):
485
486
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
487
488
        for _ in range(steps):
          train_single_step(train_iterator)
489
490
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
Tianqi Liu's avatar
Tianqi Liu committed
491
        train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
492
      train_loss = _float_metric_value(train_loss_metric)
493
494
495
496
497
498
      current_step += steps

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

Chen Chen's avatar
Chen Chen committed
499
500
501
502
503
504
505
      if current_step >= last_summary_step + train_summary_interval:
        summary_writer = train_summary_writer
        last_summary_step = current_step
      else:
        summary_writer = tf.summary.create_noop_writer()

      with summary_writer.as_default():
506
507
508
509
510
        if callable(optimizer.learning_rate):
          tf.summary.scalar(
              'learning_rate',
              optimizer.learning_rate(current_step),
              step=current_step)
Tianqi Liu's avatar
Tianqi Liu committed
511
        tf.summary.scalar(train_loss_metric.name, train_loss, step=current_step)
Chen Chen's avatar
Chen Chen committed
512
513
514
515
516
        for metric in train_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          training_status += '  %s = %f' % (metric.name, metric_value)
          tf.summary.scalar(metric.name, metric_value, step=current_step)
        summary_writer.flush()
517
518
      logging.info(training_status)

Tianqi Liu's avatar
Tianqi Liu committed
519
520
521
522
523
      # If no need for evaluation, we only call on_batch_end with train_loss,
      # this is to ensure we get granular global_step/sec on Tensorboard.
      if current_step % steps_between_evals:
        callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
      else:
524
525
526
527
528
529
530
531
532
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
533
        if current_step < total_training_steps:
534
          _save_checkpoint(strategy, checkpoint, model_dir,
535
                           checkpoint_name.format(step=current_step))
536
537
          if eval_input_fn:
            # Re-initialize evaluation metric.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
538
            eval_loss_metric.reset_states()
539
540
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
541
542
543
544

            logging.info('Running evaluation after step: %s.', current_step)
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
Tianqi Liu's avatar
Tianqi Liu committed
545
546
547
548
        # We add train_loss here rather than call on_batch_end twice to make
        # sure that no duplicated values are generated.
        logs['loss'] = train_loss
        callback_list.on_batch_end(current_step - 1, logs)
549

Tianqi Liu's avatar
Tianqi Liu committed
550
551
552
553
      # Calls on_epoch_end after each real epoch ends to prevent mis-calculation
      # of training steps.
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
554

Chen Chen's avatar
Chen Chen committed
555
    if sub_model_export_name:
556
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
557
                       '%s.ckpt' % sub_model_export_name)
558

559
560
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
561
    if eval_input_fn:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
562
563
564
565
566
      # Re-initialize evaluation metric.
      eval_loss_metric.reset_states()
      for metric in eval_metrics + model.metrics:
        metric.reset_states()

567
      logging.info('Running final evaluation after training is complete.')
568
569
570
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))
    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
571
572
573
574
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
575
576
    for metric in model.metrics:
      training_summary[metric.name] = _float_metric_value(metric)
577
578
579
580
    if eval_metrics:
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
581

582
    write_txt_summary(training_summary, summary_dir)
583

584
585
586
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

587
588
    callback_list.on_train_end()

589
    return model