model_training_utils.py 24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from tensorflow.python.util import deprecation
Zongwei Zhou's avatar
Zongwei Zhou committed
28
from official.staging.training import grad_utils
29
from official.utils.misc import distribution_utils
30

31
32
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
33

34

35
36
37
38
39
40
41
42
43
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
44
45
  """Saves model to with provided checkpoint prefix."""

46
47
48
49
50
51
52
53
54
55
56
57
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
58
59
60
  return


61
62
63
64
65
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
70
71
72
  return iterator


73
74
75
76
77
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


78
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
79
  """Calculates steps to run on device."""
80
81
82
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
83
84
85
86
87
88
89
90
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


91
def write_txt_summary(training_summary, summary_dir):
92
  """Writes a summary text file to record stats."""
Chen Chen's avatar
Chen Chen committed
93
94
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
95
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
96
97
98
99
100
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


101
102
@deprecation.deprecated(
    None, 'This function is deprecated. Please use Keras compile/fit instead.')
103
104
105
106
107
108
109
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
110
    scale_loss=True,
111
112
113
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
Tianqi Liu's avatar
Tianqi Liu committed
114
    num_eval_per_epoch=1,
115
    steps_per_loop=None,
116
117
118
119
120
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
121
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
122
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
123
124
125
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
Chen Chen's avatar
Chen Chen committed
126
127
    post_allreduce_callbacks=None,
    train_summary_interval=0):
128
129
130
131
132
133
134
135
136
137
138
139
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
140
141
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
142
143
144
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
145
146
147
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
Tianqi Liu's avatar
Tianqi Liu committed
148
      num_eval_per_epoch: Number of evaluations per epoch.
149
150
151
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
152
153
154
155
156
157
158
159
160
161
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
162
      custom_callbacks: A list of Keras Callbacks objects to run during
163
164
165
166
        training. More specifically, `on_train_begin(), on_train_end(),
        on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
        `on_epoch_end()` methods are invoked during training.
        Note that some metrics may be missing from `logs`.
167
168
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
169
170
171
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
Tianqi Liu's avatar
Tianqi Liu committed
172
173
        checkpint's name is {sub_model_export_name}.ckpt; if None, `sub_model`
        will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
174
175
176
177
178
179
180
181
182
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
Tianqi Liu's avatar
Tianqi Liu committed
183
184
185
186
        invoked in the list order and before gradients are allreduced. With
        mixed precision training, the pre_allreduce_allbacks will be applied on
        scaled_gradients. Default is no callbacks. Only used when
        explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
187
188
189
190
191
192
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
Chen Chen's avatar
Chen Chen committed
193
194
      train_summary_interval: Step interval for training summaries. If the value
        is a negative number, then training summaries are not enabled.
195
196
197
198
199
200
201
202

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
203
204
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
205
206
207
208
209
210
211
212
213
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
Tianqi Liu's avatar
Tianqi Liu committed
214
215

  steps_between_evals = int(steps_per_epoch / num_eval_per_epoch)
216
217
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
218
                     '`steps_per_epoch` and `train_input_fn` are required '
219
                     'parameters.')
220
221
222
223
  if not steps_per_loop:
    if tf.config.list_logical_devices('TPU'):
      # One can't fully utilize a TPU with steps_per_loop=1, so in this case
      # default users to a more useful value.
Tianqi Liu's avatar
Tianqi Liu committed
224
      steps_per_loop = min(1000, steps_between_evals)
225
226
227
228
    else:
      steps_per_loop = 1
    logging.info('steps_per_loop not specified. Using steps_per_loop=%d',
                 steps_per_loop)
Tianqi Liu's avatar
Tianqi Liu committed
229
  if steps_per_loop > steps_between_evals:
230
    logging.warning(
231
        'steps_per_loop: %d is specified to be greater than '
Tianqi Liu's avatar
Tianqi Liu committed
232
233
234
        ' steps_between_evals: %d, we will use steps_between_evals as'
        ' steps_per_loop.', steps_per_loop, steps_between_evals)
    steps_per_loop = steps_between_evals
235
236
  assert tf.executing_eagerly()

237
238
239
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
240
          'TPUStrategy should not run eagerly as it heavily relies on graph'
241
242
          ' optimization for the distributed system.')

243
  if eval_input_fn and eval_steps is None:
244
    raise ValueError(
245
        '`eval_step` is required when `eval_input_fn ` is not none.')
246
247
248
249
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

250
  total_training_steps = steps_per_epoch * epochs
251
  train_iterator = _get_input_iterator(train_input_fn, strategy)
Tianqi Liu's avatar
Tianqi Liu committed
252
  eval_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
253
254
255
256
257
258
259
260

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
261
262
263
264
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

265
266
267
    callback_list = tf.keras.callbacks.CallbackList(
        callbacks=custom_callbacks, model=model)

268
269
270
271
272
273
274
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
275
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
276
277
      logging.info('Loading from checkpoint file completed')

Tianqi Liu's avatar
Tianqi Liu committed
278
    train_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
279
280
281
282
283
284
285
286
287
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
288
289
290
291
292
293
294
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
295
    eval_summary_writer = tf.summary.create_file_writer(
296
        os.path.join(summary_dir, 'eval'))
Chen Chen's avatar
Chen Chen committed
297
298
    last_summary_step = 0
    if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
299
300
301
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
302
          os.path.join(summary_dir, 'train'))
303
    else:
Chen Chen's avatar
Chen Chen committed
304
      train_summary_writer = tf.summary.create_noop_writer()
305
306
307
308
309
310
311
312
313
314
315

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
316
317
318
319
320
321
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
322
323
324
325
326
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
327
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
328
329
330
331
332
333
334
335
336
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
337
      # For reporting, the metric takes the mean of losses.
338
      train_loss_metric.update_state(raw_loss)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
359
        strategy.run(_replicated_step, args=(next(iterator),))
360

361
362
    def train_single_step(iterator):
      """Performs a distributed training step.
363

364
365
      Args:
        iterator: the distributed iterator of training datasets.
366

367
368
369
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
370
      strategy.run(_replicated_step, args=(next(iterator),))
371

372
373
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
374

375
376
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
377

378
379
380
381
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
382
        return model_outputs, labels
383

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
384
385
386
387
388
389
      outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      outputs)
      labels = tf.nest.map_structure(strategy.experimental_local_results,
                                     labels)
      return outputs, labels
390
391
392
393
394
395

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
396
397
398
399
400
401
402
403
404
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
405
406
407
408
409
410
      # The last batch of the evaluation is often smaller than previous ones.
      # Moreover, in some distributed pieces it might even be empty. Therefore,
      # different from the way training_loss is calculated, it is needed to
      # gather all the logits and labels here to calculate the evaluation loss
      # outside.
      loss_list, loss_weights = list(), list()
411
      for _ in range(eval_steps):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
412
413
414
415
416
417
418
419
420
421
422
423
        outputs, labels = test_step(test_iterator)
        for cur_logits, cur_labels in zip(outputs, labels):
          # This is to handle cases when cur_labels is not a single tensor,
          # but a dict of tensors.
          cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
          if cur_weight != 0:
            loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
            loss_weights.append(cur_weight)
      # The sample_weights are the actual number of examples in each batch,
      # a summation of numbers of examples in each replica if using
      # distributed training.
      eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
424

425
      logs = {}
426
      with eval_summary_writer.as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
427
        for metric in [eval_loss_metric] + eval_metrics + model.metrics:
428
          metric_value = _float_metric_value(metric)
429
          logs[metric.name] = metric_value
430
431
432
433
434
435
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

436
      return logs
437
438

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
439
440
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
441
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
442
443
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
444

445
446
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
Tianqi Liu's avatar
Tianqi Liu committed
447
448
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
449
450
451
452
453
454
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

Tianqi Liu's avatar
Tianqi Liu committed
455
    logs = {}
456
457
    callback_list.on_train_begin()
    while current_step < total_training_steps and not model.stop_training:
458
      if current_step % steps_per_epoch == 0:
Tianqi Liu's avatar
Tianqi Liu committed
459
460
        callback_list.on_epoch_begin(
            int(current_step / steps_per_epoch) + 1)
461

462
463
464
465
466
467
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

468
      callback_list.on_batch_begin(current_step)
469
      # Runs several steps in the host while loop.
Tianqi Liu's avatar
Tianqi Liu committed
470
      steps = steps_to_run(current_step, steps_between_evals, steps_per_loop)
471

472
      if tf.config.list_physical_devices('GPU'):
473
474
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
475
476
        for _ in range(steps):
          train_single_step(train_iterator)
477
478
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
Tianqi Liu's avatar
Tianqi Liu committed
479
        train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
480
      train_loss = _float_metric_value(train_loss_metric)
481
482
483
484
485
486
      current_step += steps

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

Chen Chen's avatar
Chen Chen committed
487
488
489
490
491
492
493
      if current_step >= last_summary_step + train_summary_interval:
        summary_writer = train_summary_writer
        last_summary_step = current_step
      else:
        summary_writer = tf.summary.create_noop_writer()

      with summary_writer.as_default():
494
495
496
497
498
        if callable(optimizer.learning_rate):
          tf.summary.scalar(
              'learning_rate',
              optimizer.learning_rate(current_step),
              step=current_step)
Tianqi Liu's avatar
Tianqi Liu committed
499
        tf.summary.scalar(train_loss_metric.name, train_loss, step=current_step)
Chen Chen's avatar
Chen Chen committed
500
501
502
503
504
        for metric in train_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          training_status += '  %s = %f' % (metric.name, metric_value)
          tf.summary.scalar(metric.name, metric_value, step=current_step)
        summary_writer.flush()
505
506
      logging.info(training_status)

Tianqi Liu's avatar
Tianqi Liu committed
507
508
509
510
511
      # If no need for evaluation, we only call on_batch_end with train_loss,
      # this is to ensure we get granular global_step/sec on Tensorboard.
      if current_step % steps_between_evals:
        callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
      else:
512
513
514
515
516
517
518
519
520
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
521
        if current_step < total_training_steps:
522
          _save_checkpoint(strategy, checkpoint, model_dir,
523
                           checkpoint_name.format(step=current_step))
524
525
          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
526
527
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
528
            # Re-initialize evaluation metric.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
529
            eval_loss_metric.reset_states()
530
531
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
Tianqi Liu's avatar
Tianqi Liu committed
532
533
534
535
        # We add train_loss here rather than call on_batch_end twice to make
        # sure that no duplicated values are generated.
        logs['loss'] = train_loss
        callback_list.on_batch_end(current_step - 1, logs)
536

Tianqi Liu's avatar
Tianqi Liu committed
537
538
539
540
      # Calls on_epoch_end after each real epoch ends to prevent mis-calculation
      # of training steps.
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
541

Chen Chen's avatar
Chen Chen committed
542
    if sub_model_export_name:
543
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
544
                       '%s.ckpt' % sub_model_export_name)
545

546
547
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
548
549
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
550
551
552
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))
    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
553
554
555
556
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
557
558
    for metric in model.metrics:
      training_summary[metric.name] = _float_metric_value(metric)
559
560
561
562
563
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
564

565
    write_txt_summary(training_summary, summary_dir)
566

567
568
569
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

570
571
    callback_list.on_train_end()

572
    return model