model_training_utils.py 20.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
Zongwei Zhou's avatar
Zongwei Zhou committed
27
from official.staging.training import grad_utils
28
from official.utils.misc import distribution_utils
29

30
31
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
32

33

34
35
36
37
38
39
40
41
42
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
43
44
  """Saves model to with provided checkpoint prefix."""

45
46
47
48
49
50
51
52
53
54
55
56
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
57
58
59
  return


60
61
62
63
64
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
65
66
67
68
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
69
70
71
  return iterator


72
73
74
75
76
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


77
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
78
  """Calculates steps to run on device."""
79
80
81
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
82
83
84
85
86
87
88
89
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


90
def write_txt_summary(training_summary, summary_dir):
91
  """Writes a summary text file to record stats."""
92
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
93
94
95
96
97
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


98
99
100
101
102
103
104
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
105
    scale_loss=True,
106
107
108
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
109
    steps_per_loop=1,
110
111
112
113
114
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
115
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
116
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
117
118
119
120
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
    post_allreduce_callbacks=None):
121
122
123
124
125
126
127
128
129
130
131
132
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
133
134
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
135
136
137
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
138
139
140
141
142
143
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
144
145
146
147
148
149
150
151
152
153
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
154
      custom_callbacks: A list of Keras Callbacks objects to run during
155
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
156
157
        `on_epoch_begin()`, `on_epoch_end()` methods are invoked during
        training.  Note that some metrics may be missing from `logs`.
158
159
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
160
161
162
163
164
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
        checkpint's name is {sub_model_export_name}.ckpt;
        if None, `sub_model` will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
165
166
167
168
169
170
171
172
173
174
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
        invoked in the list order and before gradients are allreduced.
175
176
177
        With mixed precision training, the pre_allreduce_allbacks will be
        applied on scaled_gradients. Default is no callbacks.
        Only used when explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
178
179
180
181
182
183
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
184
185
186
187
188
189
190
191

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
192
193
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
194
195
196
197
198
199
200
201
202
203
204
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
205
206
207
208
209
210
211
212
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
213
214
  assert tf.executing_eagerly()

215
216
217
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
218
          'TPUStrategy should not run eagerly as it heavily relies on graph'
219
220
          ' optimization for the distributed system.')

221
222
223
224
225
226
227
228
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

229
230
  callback_list = tf.keras.callbacks.CallbackList(custom_callbacks)

231
  total_training_steps = steps_per_epoch * epochs
232
233
234
235
236
237
238
239
240
  train_iterator = _get_input_iterator(train_input_fn, strategy)

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
241
242
243
244
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

245
246
247
248
249
250
251
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
252
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
253
254
255
256
257
258
259
260
261
262
263
264
265
      logging.info('Loading from checkpoint file completed')

    train_loss_metric = tf.keras.metrics.Mean(
        'training_loss', dtype=tf.float32)
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
266
267
268
269
270
271
272
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
273
    eval_summary_writer = tf.summary.create_file_writer(
274
        os.path.join(summary_dir, 'eval'))
275
276
277
278
    if steps_per_loop >= _MIN_SUMMARY_STEPS:
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
279
          os.path.join(summary_dir, 'train'))
280
281
282
283
284
285
286
287
288
289
290
291
292
    else:
      train_summary_writer = None

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
293
294
295
296
297
298
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
299
300
301
302
303
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
304
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
305
306
307
308
309
310
311
312
313
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
314
      # For reporting, the metric takes the mean of losses.
315
      train_loss_metric.update_state(raw_loss)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
336
        strategy.run(_replicated_step, args=(next(iterator),))
337

338
339
    def train_single_step(iterator):
      """Performs a distributed training step.
340

341
342
      Args:
        iterator: the distributed iterator of training datasets.
343

344
345
346
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
347
      strategy.run(_replicated_step, args=(next(iterator),))
348

349
350
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
351

352
353
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
354

355
356
357
358
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
359

Ken Franko's avatar
Ken Franko committed
360
      strategy.run(_test_step_fn, args=(next(iterator),))
361
362
363
364
365
366

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
367
368
369
370
371
372
373
374
375
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
376
377
378
      for _ in range(eval_steps):
        test_step(test_iterator)

379
      logs = {}
380
381
382
      with eval_summary_writer.as_default():
        for metric in eval_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
383
          logs[metric.name] = metric_value
384
385
386
387
388
389
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

390
      return logs
391
392

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
393
394
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
395
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
396
397
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
398

399
400
401
402
403
404
405
406
407
408
409
410
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

    while current_step < total_training_steps:
411
412
413
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_begin(int(current_step / steps_per_epoch) + 1)

414
415
416
417
418
419
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

420
      callback_list.on_batch_begin(current_step)
421
      # Runs several steps in the host while loop.
422
      steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
423

424
      if tf.config.list_physical_devices('GPU'):
425
426
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
427
428
        for _ in range(steps):
          train_single_step(train_iterator)
429
430
431
432
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
        train_steps(train_iterator,
                    tf.convert_to_tensor(steps, dtype=tf.int32))
433
      train_loss = _float_metric_value(train_loss_metric)
434
      current_step += steps
435
      callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          for metric in train_metrics + model.metrics:
            metric_value = _float_metric_value(metric)
            training_status += '  %s = %f' % (metric.name, metric_value)
            tf.summary.scalar(metric.name, metric_value, step=current_step)
          train_summary_writer.flush()
      logging.info(training_status)

      if current_step % steps_per_epoch == 0:
453
454
455
456
457
458
459
460
461
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
462
        if current_step < total_training_steps:
463
          _save_checkpoint(strategy, checkpoint, model_dir,
464
                           checkpoint_name.format(step=current_step))
465
          logs = None
466
467
          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
468
469
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
470
471
472
            # Re-initialize evaluation metric.
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
473

474
475
          callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)

Chen Chen's avatar
Chen Chen committed
476
    if sub_model_export_name:
477
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
478
                       '%s.ckpt' % sub_model_export_name)
479

480
481
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
482
    logs = None
483
484
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
485
486
487
488
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))

    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
489

490
491
492
493
494
495
496
497
498
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
499

500
    write_txt_summary(training_summary, summary_dir)
501

502
503
504
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

505
    return model