model_training_utils.py 22.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from tensorflow.python.util import deprecation
Zongwei Zhou's avatar
Zongwei Zhou committed
28
from official.staging.training import grad_utils
29
from official.utils.misc import distribution_utils
30

31
32
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
33

34

35
36
37
38
39
40
41
42
43
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
44
45
  """Saves model to with provided checkpoint prefix."""

46
47
48
49
50
51
52
53
54
55
56
57
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
58
59
60
  return


61
62
63
64
65
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
70
71
72
  return iterator


73
74
75
76
77
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


78
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
79
  """Calculates steps to run on device."""
80
81
82
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
83
84
85
86
87
88
89
90
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


91
def write_txt_summary(training_summary, summary_dir):
92
  """Writes a summary text file to record stats."""
Chen Chen's avatar
Chen Chen committed
93
94
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
95
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
96
97
98
99
100
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


101
102
@deprecation.deprecated(
    None, 'This function is deprecated. Please use Keras compile/fit instead.')
103
104
105
106
107
108
109
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
110
    scale_loss=True,
111
112
113
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
114
    steps_per_loop=1,
115
116
117
118
119
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
120
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
121
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
122
123
124
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
Chen Chen's avatar
Chen Chen committed
125
126
    post_allreduce_callbacks=None,
    train_summary_interval=0):
127
128
129
130
131
132
133
134
135
136
137
138
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
139
140
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
141
142
143
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
144
145
146
147
148
149
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
150
151
152
153
154
155
156
157
158
159
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
160
      custom_callbacks: A list of Keras Callbacks objects to run during
161
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
162
163
        `on_epoch_begin()`, `on_epoch_end()` methods are invoked during
        training.  Note that some metrics may be missing from `logs`.
164
165
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
166
167
168
169
170
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
        checkpint's name is {sub_model_export_name}.ckpt;
        if None, `sub_model` will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
171
172
173
174
175
176
177
178
179
180
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
        invoked in the list order and before gradients are allreduced.
181
182
183
        With mixed precision training, the pre_allreduce_allbacks will be
        applied on scaled_gradients. Default is no callbacks.
        Only used when explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
184
185
186
187
188
189
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
Chen Chen's avatar
Chen Chen committed
190
191
      train_summary_interval: Step interval for training summaries. If the value
        is a negative number, then training summaries are not enabled.
192
193
194
195
196
197
198
199

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
200
201
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
202
203
204
205
206
207
208
209
210
211
212
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
213
214
215
216
217
218
219
220
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
221
222
  assert tf.executing_eagerly()

223
224
225
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
          'TPUStrategy should not run eagerly as it heavily relies on graph'
227
228
          ' optimization for the distributed system.')

229
230
231
232
233
234
235
236
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

237
238
  callback_list = tf.keras.callbacks.CallbackList(custom_callbacks)

239
  total_training_steps = steps_per_epoch * epochs
240
  train_iterator = _get_input_iterator(train_input_fn, strategy)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
  eval_loss_metric = tf.keras.metrics.Mean(
      'training_loss', dtype=tf.float32)
243
244
245
246
247
248
249
250

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
251
252
253
254
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

255
256
257
258
259
260
261
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
262
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
263
264
265
266
267
268
269
270
271
272
273
274
275
      logging.info('Loading from checkpoint file completed')

    train_loss_metric = tf.keras.metrics.Mean(
        'training_loss', dtype=tf.float32)
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
276
277
278
279
280
281
282
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
283
    eval_summary_writer = tf.summary.create_file_writer(
284
        os.path.join(summary_dir, 'eval'))
Chen Chen's avatar
Chen Chen committed
285
286
    last_summary_step = 0
    if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
287
288
289
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
290
          os.path.join(summary_dir, 'train'))
291
    else:
Chen Chen's avatar
Chen Chen committed
292
      train_summary_writer = tf.summary.create_noop_writer()
293
294
295
296
297
298
299
300
301
302
303

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
304
305
306
307
308
309
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
310
311
312
313
314
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
315
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
316
317
318
319
320
321
322
323
324
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
325
      # For reporting, the metric takes the mean of losses.
326
      train_loss_metric.update_state(raw_loss)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
347
        strategy.run(_replicated_step, args=(next(iterator),))
348

349
350
    def train_single_step(iterator):
      """Performs a distributed training step.
351

352
353
      Args:
        iterator: the distributed iterator of training datasets.
354

355
356
357
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
358
      strategy.run(_replicated_step, args=(next(iterator),))
359

360
361
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
362

363
364
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
365

366
367
368
369
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
370
        return model_outputs, labels
371

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
372
373
374
375
376
377
      outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      outputs)
      labels = tf.nest.map_structure(strategy.experimental_local_results,
                                     labels)
      return outputs, labels
378
379
380
381
382
383

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
384
385
386
387
388
389
390
391
392
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
393
394
395
396
397
398
      # The last batch of the evaluation is often smaller than previous ones.
      # Moreover, in some distributed pieces it might even be empty. Therefore,
      # different from the way training_loss is calculated, it is needed to
      # gather all the logits and labels here to calculate the evaluation loss
      # outside.
      loss_list, loss_weights = list(), list()
399
      for _ in range(eval_steps):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
400
401
402
403
404
405
406
407
408
409
410
411
        outputs, labels = test_step(test_iterator)
        for cur_logits, cur_labels in zip(outputs, labels):
          # This is to handle cases when cur_labels is not a single tensor,
          # but a dict of tensors.
          cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
          if cur_weight != 0:
            loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
            loss_weights.append(cur_weight)
      # The sample_weights are the actual number of examples in each batch,
      # a summation of numbers of examples in each replica if using
      # distributed training.
      eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
412

413
      logs = {}
414
      with eval_summary_writer.as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
415
        for metric in [eval_loss_metric] + eval_metrics + model.metrics:
416
          metric_value = _float_metric_value(metric)
417
          logs[metric.name] = metric_value
418
419
420
421
422
423
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

424
      return logs
425
426

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
427
428
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
429
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
430
431
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
432

433
434
435
436
437
438
439
440
441
442
443
444
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

    while current_step < total_training_steps:
445
446
447
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_begin(int(current_step / steps_per_epoch) + 1)

448
449
450
451
452
453
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

454
      callback_list.on_batch_begin(current_step)
455
      # Runs several steps in the host while loop.
456
      steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
457

458
      if tf.config.list_physical_devices('GPU'):
459
460
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
461
462
        for _ in range(steps):
          train_single_step(train_iterator)
463
464
465
466
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
        train_steps(train_iterator,
                    tf.convert_to_tensor(steps, dtype=tf.int32))
467
      train_loss = _float_metric_value(train_loss_metric)
468
      current_step += steps
469
      callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
470
471
472
473
474

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

Chen Chen's avatar
Chen Chen committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
      if current_step >= last_summary_step + train_summary_interval:
        summary_writer = train_summary_writer
        last_summary_step = current_step
      else:
        summary_writer = tf.summary.create_noop_writer()

      with summary_writer.as_default():
        tf.summary.scalar(
            train_loss_metric.name, train_loss, step=current_step)
        for metric in train_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          training_status += '  %s = %f' % (metric.name, metric_value)
          tf.summary.scalar(metric.name, metric_value, step=current_step)
        summary_writer.flush()
489
490
491
      logging.info(training_status)

      if current_step % steps_per_epoch == 0:
492
493
494
495
496
497
498
499
500
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
501
        if current_step < total_training_steps:
502
          _save_checkpoint(strategy, checkpoint, model_dir,
503
                           checkpoint_name.format(step=current_step))
504
          logs = None
505
506
          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
507
508
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
509
            # Re-initialize evaluation metric.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
510
            eval_loss_metric.reset_states()
511
512
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
513

514
515
          callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)

Chen Chen's avatar
Chen Chen committed
516
    if sub_model_export_name:
517
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
518
                       '%s.ckpt' % sub_model_export_name)
519

520
521
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
522
    logs = None
523
524
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
525
526
527
528
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))

    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
529

530
531
532
533
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
534
535
    for metric in model.metrics:
      training_summary[metric.name] = _float_metric_value(metric)
536
537
538
539
540
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
541

542
    write_txt_summary(training_summary, summary_dir)
543

544
545
546
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

547
    return model