"docs/distrib_optimizer.md" did not exist on "1cc210173a5b345078de486ee185fd400d6e41da"
model_training_utils.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
Zongwei Zhou's avatar
Zongwei Zhou committed
27
from official.staging.training import grad_utils
28
from official.utils.misc import distribution_utils
29

30
31
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
32

33

34
35
36
37
38
39
40
41
42
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
43
44
  """Saves model to with provided checkpoint prefix."""

45
46
47
48
49
50
51
52
53
54
55
56
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
57
58
59
  return


60
61
62
63
64
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
65
66
67
68
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
69
70
71
  return iterator


72
73
74
75
76
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


77
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
78
  """Calculates steps to run on device."""
79
80
81
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
82
83
84
85
86
87
88
89
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


90
def write_txt_summary(training_summary, summary_dir):
91
  """Writes a summary text file to record stats."""
92
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
93
94
95
96
97
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


98
99
100
101
102
103
104
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
105
    scale_loss=True,
106
107
108
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
109
    steps_per_loop=1,
110
111
112
113
114
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
115
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
116
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
117
118
119
120
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
    post_allreduce_callbacks=None):
121
122
123
124
125
126
127
128
129
130
131
132
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
133
134
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
135
136
137
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
138
139
140
141
142
143
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
144
145
146
147
148
149
150
151
152
153
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
154
      custom_callbacks: A list of Keras Callbacks objects to run during
155
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
156
        methods are invoked during training.
157
158
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
159
160
161
162
163
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
        checkpint's name is {sub_model_export_name}.ckpt;
        if None, `sub_model` will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
164
165
166
167
168
169
170
171
172
173
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
        invoked in the list order and before gradients are allreduced.
174
175
176
        With mixed precision training, the pre_allreduce_allbacks will be
        applied on scaled_gradients. Default is no callbacks.
        Only used when explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
177
178
179
180
181
182
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
183
184
185
186
187
188
189
190

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
191
192
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
193
194
195
196
197
198
199
200
201
202
203
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
204
205
206
207
208
209
210
211
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
212
213
  assert tf.executing_eagerly()

214
215
216
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
          'TPUStrategy should not run eagerly as it heavily relies on graph'
218
219
          ' optimization for the distributed system.')

220
221
222
223
224
225
226
227
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

228
  total_training_steps = steps_per_epoch * epochs
229
230
231
232
233
234
235
236
237
  train_iterator = _get_input_iterator(train_input_fn, strategy)

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
238
239
240
241
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

242
243
244
245
246
247
248
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
249
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
250
251
252
253
254
255
256
257
258
259
260
261
262
      logging.info('Loading from checkpoint file completed')

    train_loss_metric = tf.keras.metrics.Mean(
        'training_loss', dtype=tf.float32)
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
263
264
265
266
267
268
269
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
270
    eval_summary_writer = tf.summary.create_file_writer(
271
        os.path.join(summary_dir, 'eval'))
272
273
274
275
    if steps_per_loop >= _MIN_SUMMARY_STEPS:
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
276
          os.path.join(summary_dir, 'train'))
277
278
279
280
281
282
283
284
285
286
287
288
289
    else:
      train_summary_writer = None

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
290
291
292
293
294
295
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
296
297
298
299
300
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
301
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
302
303
304
305
306
307
308
309
310
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
311
      # For reporting, the metric takes the mean of losses.
312
      train_loss_metric.update_state(raw_loss)
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
333
        strategy.run(_replicated_step, args=(next(iterator),))
334

335
336
    def train_single_step(iterator):
      """Performs a distributed training step.
337

338
339
      Args:
        iterator: the distributed iterator of training datasets.
340

341
342
343
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
344
      strategy.run(_replicated_step, args=(next(iterator),))
345

346
347
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
348

349
350
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
351

352
353
354
355
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
356

Ken Franko's avatar
Ken Franko committed
357
      strategy.run(_test_step_fn, args=(next(iterator),))
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
      """Runs validation steps and aggregate metrics."""
      for _ in range(eval_steps):
        test_step(test_iterator)

      with eval_summary_writer.as_default():
        for metric in eval_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

    def _run_callbacks_on_batch_begin(batch):
      """Runs custom callbacks at the start of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
        callback.on_batch_begin(batch)

384
    def _run_callbacks_on_batch_end(batch, logs):
385
386
387
388
      """Runs custom callbacks at the end of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
389
        callback.on_batch_end(batch, logs)
390
391

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
392
393
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
394
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
395
396
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

    while current_step < total_training_steps:
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

      _run_callbacks_on_batch_begin(current_step)
      # Runs several steps in the host while loop.
418
      steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
419

420
      if tf.config.list_physical_devices('GPU'):
421
422
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
423
424
        for _ in range(steps):
          train_single_step(train_iterator)
425
426
427
428
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
        train_steps(train_iterator,
                    tf.convert_to_tensor(steps, dtype=tf.int32))
429
      train_loss = _float_metric_value(train_loss_metric)
430
      current_step += steps
431
      _run_callbacks_on_batch_end(current_step - 1, {'loss': train_loss})
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          for metric in train_metrics + model.metrics:
            metric_value = _float_metric_value(metric)
            training_status += '  %s = %f' % (metric.name, metric_value)
            tf.summary.scalar(metric.name, metric_value, step=current_step)
          train_summary_writer.flush()
      logging.info(training_status)

      if current_step % steps_per_epoch == 0:
449
450
451
452
453
454
455
456
457
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
458
        if current_step < total_training_steps:
459
          _save_checkpoint(strategy, checkpoint, model_dir,
460
                           checkpoint_name.format(step=current_step))
461
462
463
464
465
466
467
          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
            _run_evaluation(current_step,
                            _get_input_iterator(eval_input_fn, strategy))
            # Re-initialize evaluation metric.
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
468

Chen Chen's avatar
Chen Chen committed
469
    if sub_model_export_name:
470
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
471
                       '%s.ckpt' % sub_model_export_name)
472

473
474
475
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))

476
477
478
479
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
      _run_evaluation(current_step,
                      _get_input_iterator(eval_input_fn, strategy))
480

481
482
483
484
485
486
487
488
489
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
490

491
    write_txt_summary(training_summary, summary_dir)
492

493
494
495
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

496
    return model