model_training_utils.py 24.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from tensorflow.python.util import deprecation
28
from official.common import distribute_utils
Zongwei Zhou's avatar
Zongwei Zhou committed
29
from official.staging.training import grad_utils
30

31
32
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
33

34

35
36
37
38
39
40
41
42
43
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
44
45
  """Saves model to with provided checkpoint prefix."""

46
47
48
49
50
51
52
53
54
55
56
57
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
58
59
60
  return


61
62
63
64
65
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
70
71
72
  return iterator


73
74
75
76
77
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


78
79
80
81
82
83
84
def clip_by_global_norm_callback(grads_and_vars):
  """Performs gradient clipping."""
  grads, variables = zip(*grads_and_vars)
  (clipped_grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
  return zip(clipped_grads, variables)


85
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
86
  """Calculates steps to run on device."""
87
88
89
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
90
91
92
93
94
95
96
97
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


98
def write_txt_summary(training_summary, summary_dir):
99
  """Writes a summary text file to record stats."""
Chen Chen's avatar
Chen Chen committed
100
101
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
102
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
103
104
105
106
107
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


108
@deprecation.deprecated(
109
110
111
    None, 'This function is deprecated and we do not expect adding new '
    'functionalities. Please do not have your code depending '
    'on this library.')
112
113
114
115
116
117
118
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
119
    scale_loss=True,
120
121
122
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
Tianqi Liu's avatar
Tianqi Liu committed
123
    num_eval_per_epoch=1,
124
    steps_per_loop=None,
125
126
127
128
129
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
130
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
131
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
132
133
134
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
Chen Chen's avatar
Chen Chen committed
135
    post_allreduce_callbacks=None,
Zongwei Zhou's avatar
Zongwei Zhou committed
136
137
    train_summary_interval=0,
    allreduce_bytes_per_pack=0):
138
139
140
141
142
143
144
145
146
147
148
149
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
150
151
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
152
153
154
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
155
156
157
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
Tianqi Liu's avatar
Tianqi Liu committed
158
      num_eval_per_epoch: Number of evaluations per epoch.
159
160
161
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
162
163
164
165
166
167
168
169
170
171
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
172
      custom_callbacks: A list of Keras Callbacks objects to run during
173
174
        training. More specifically, `on_train_begin(), on_train_end(),
        on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
Hongkun Yu's avatar
Hongkun Yu committed
175
176
        `on_epoch_end()` methods are invoked during training. Note that some
        metrics may be missing from `logs`.
177
178
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
179
180
181
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
Tianqi Liu's avatar
Tianqi Liu committed
182
183
        checkpint's name is {sub_model_export_name}.ckpt; if None, `sub_model`
        will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
184
185
186
187
188
189
190
191
192
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
Tianqi Liu's avatar
Tianqi Liu committed
193
194
195
196
        invoked in the list order and before gradients are allreduced. With
        mixed precision training, the pre_allreduce_allbacks will be applied on
        scaled_gradients. Default is no callbacks. Only used when
        explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
197
198
199
200
201
202
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
Chen Chen's avatar
Chen Chen committed
203
204
      train_summary_interval: Step interval for training summaries. If the value
        is a negative number, then training summaries are not enabled.
Zongwei Zhou's avatar
Zongwei Zhou committed
205
206
207
208
209
      allreduce_bytes_per_pack: A non-negative integer. Breaks collective
        operations into packs of certain size. If it's zero, all gradients are
        in one pack. Breaking gradient into packs could enable overlap between
        allreduce and backprop computation. This flag only takes effect when
        explicit_allreduce is set to True.'
210
211
212
213
214
215
216
217

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
218
219
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
220
221
222
223
224
225
226
227
228
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
Tianqi Liu's avatar
Tianqi Liu committed
229
230

  steps_between_evals = int(steps_per_epoch / num_eval_per_epoch)
231
232
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
233
                     '`steps_per_epoch` and `train_input_fn` are required '
234
                     'parameters.')
235
236
237
238
  if not steps_per_loop:
    if tf.config.list_logical_devices('TPU'):
      # One can't fully utilize a TPU with steps_per_loop=1, so in this case
      # default users to a more useful value.
Tianqi Liu's avatar
Tianqi Liu committed
239
      steps_per_loop = min(1000, steps_between_evals)
240
241
242
243
    else:
      steps_per_loop = 1
    logging.info('steps_per_loop not specified. Using steps_per_loop=%d',
                 steps_per_loop)
Tianqi Liu's avatar
Tianqi Liu committed
244
  if steps_per_loop > steps_between_evals:
245
    logging.warning(
246
        'steps_per_loop: %d is specified to be greater than '
Tianqi Liu's avatar
Tianqi Liu committed
247
248
249
        ' steps_between_evals: %d, we will use steps_between_evals as'
        ' steps_per_loop.', steps_per_loop, steps_between_evals)
    steps_per_loop = steps_between_evals
250
251
  assert tf.executing_eagerly()

252
253
254
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
255
          'TPUStrategy should not run eagerly as it heavily relies on graph'
256
257
          ' optimization for the distributed system.')

258
  if eval_input_fn and eval_steps is None:
259
    raise ValueError(
260
        '`eval_step` is required when `eval_input_fn ` is not none.')
261
262
263
264
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

265
  total_training_steps = steps_per_epoch * epochs
266
  train_iterator = _get_input_iterator(train_input_fn, strategy)
Tianqi Liu's avatar
Tianqi Liu committed
267
  eval_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
268

269
  with distribute_utils.get_strategy_scope(strategy):
270
271
272
273
274
275
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
276
277
278
279
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

280
281
282
    callback_list = tf.keras.callbacks.CallbackList(
        callbacks=custom_callbacks, model=model)

283
284
285
286
287
288
289
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
290
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
291
292
      logging.info('Loading from checkpoint file completed')

Tianqi Liu's avatar
Tianqi Liu committed
293
    train_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
294
295
296
297
298
299
300
301
302
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
303
304
305
306
307
308
309
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
310
    eval_summary_writer = tf.summary.create_file_writer(
311
        os.path.join(summary_dir, 'eval'))
Chen Chen's avatar
Chen Chen committed
312
313
    last_summary_step = 0
    if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
314
315
316
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
317
          os.path.join(summary_dir, 'train'))
318
    else:
Chen Chen's avatar
Chen Chen committed
319
      train_summary_writer = tf.summary.create_noop_writer()
320
321
322
323
324
325
326
327
328
329
330

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
331
332
333
334
335
336
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
337
338
339
340
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
Zongwei Zhou's avatar
Zongwei Zhou committed
341
342
                                                     post_allreduce_callbacks,
                                                     allreduce_bytes_per_pack)
343
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
344
345
346
347
348
349
350
351
352
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
353
      # For reporting, the metric takes the mean of losses.
354
      train_loss_metric.update_state(raw_loss)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
375
        strategy.run(_replicated_step, args=(next(iterator),))
376

377
378
    def train_single_step(iterator):
      """Performs a distributed training step.
379

380
381
      Args:
        iterator: the distributed iterator of training datasets.
382

383
384
385
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
386
      strategy.run(_replicated_step, args=(next(iterator),))
387

388
389
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
390

391
392
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
393

394
395
396
397
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
398
        return model_outputs, labels
399

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
400
401
402
403
404
405
      outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      outputs)
      labels = tf.nest.map_structure(strategy.experimental_local_results,
                                     labels)
      return outputs, labels
406
407
408
409
410
411

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
412
413
414
415
416
417
418
419
420
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
421
422
423
424
425
426
      # The last batch of the evaluation is often smaller than previous ones.
      # Moreover, in some distributed pieces it might even be empty. Therefore,
      # different from the way training_loss is calculated, it is needed to
      # gather all the logits and labels here to calculate the evaluation loss
      # outside.
      loss_list, loss_weights = list(), list()
427
      for _ in range(eval_steps):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
428
429
430
431
432
433
434
435
436
437
438
439
        outputs, labels = test_step(test_iterator)
        for cur_logits, cur_labels in zip(outputs, labels):
          # This is to handle cases when cur_labels is not a single tensor,
          # but a dict of tensors.
          cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
          if cur_weight != 0:
            loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
            loss_weights.append(cur_weight)
      # The sample_weights are the actual number of examples in each batch,
      # a summation of numbers of examples in each replica if using
      # distributed training.
      eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
440

441
      logs = {}
442
      with eval_summary_writer.as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
443
        for metric in [eval_loss_metric] + eval_metrics + model.metrics:
444
          metric_value = _float_metric_value(metric)
445
          logs[metric.name] = metric_value
446
447
448
449
450
451
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

452
      return logs
453
454

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
455
456
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
457
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
458
459
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
460

461
462
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
Tianqi Liu's avatar
Tianqi Liu committed
463
464
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
465
466
467
468
469
470
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

Tianqi Liu's avatar
Tianqi Liu committed
471
    logs = {}
472
473
    callback_list.on_train_begin()
    while current_step < total_training_steps and not model.stop_training:
474
      if current_step % steps_per_epoch == 0:
Hongkun Yu's avatar
Hongkun Yu committed
475
        callback_list.on_epoch_begin(int(current_step / steps_per_epoch) + 1)
476

477
478
479
480
481
482
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

483
      callback_list.on_batch_begin(current_step)
484
      # Runs several steps in the host while loop.
Tianqi Liu's avatar
Tianqi Liu committed
485
      steps = steps_to_run(current_step, steps_between_evals, steps_per_loop)
486

487
      if tf.config.list_physical_devices('GPU'):
488
489
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
490
491
        for _ in range(steps):
          train_single_step(train_iterator)
492
493
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
Tianqi Liu's avatar
Tianqi Liu committed
494
        train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
495
      train_loss = _float_metric_value(train_loss_metric)
496
497
498
499
500
501
      current_step += steps

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

Chen Chen's avatar
Chen Chen committed
502
503
504
505
506
507
508
      if current_step >= last_summary_step + train_summary_interval:
        summary_writer = train_summary_writer
        last_summary_step = current_step
      else:
        summary_writer = tf.summary.create_noop_writer()

      with summary_writer.as_default():
509
510
511
512
513
        if callable(optimizer.learning_rate):
          tf.summary.scalar(
              'learning_rate',
              optimizer.learning_rate(current_step),
              step=current_step)
Tianqi Liu's avatar
Tianqi Liu committed
514
        tf.summary.scalar(train_loss_metric.name, train_loss, step=current_step)
Chen Chen's avatar
Chen Chen committed
515
516
517
518
519
        for metric in train_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          training_status += '  %s = %f' % (metric.name, metric_value)
          tf.summary.scalar(metric.name, metric_value, step=current_step)
        summary_writer.flush()
520
521
      logging.info(training_status)

Tianqi Liu's avatar
Tianqi Liu committed
522
523
524
525
526
      # If no need for evaluation, we only call on_batch_end with train_loss,
      # this is to ensure we get granular global_step/sec on Tensorboard.
      if current_step % steps_between_evals:
        callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
      else:
527
528
529
530
531
532
533
534
535
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
536
        if current_step < total_training_steps:
537
          _save_checkpoint(strategy, checkpoint, model_dir,
538
                           checkpoint_name.format(step=current_step))
539
540
          if eval_input_fn:
            # Re-initialize evaluation metric.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
541
            eval_loss_metric.reset_states()
542
543
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
544
545
546
547

            logging.info('Running evaluation after step: %s.', current_step)
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
Tianqi Liu's avatar
Tianqi Liu committed
548
549
550
551
        # We add train_loss here rather than call on_batch_end twice to make
        # sure that no duplicated values are generated.
        logs['loss'] = train_loss
        callback_list.on_batch_end(current_step - 1, logs)
552

Tianqi Liu's avatar
Tianqi Liu committed
553
554
555
556
      # Calls on_epoch_end after each real epoch ends to prevent mis-calculation
      # of training steps.
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
557

Chen Chen's avatar
Chen Chen committed
558
    if sub_model_export_name:
559
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
560
                       '%s.ckpt' % sub_model_export_name)
561

562
563
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
564
    if eval_input_fn:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
565
566
567
568
569
      # Re-initialize evaluation metric.
      eval_loss_metric.reset_states()
      for metric in eval_metrics + model.metrics:
        metric.reset_states()

570
      logging.info('Running final evaluation after training is complete.')
571
572
573
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))
    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
574
575
576
577
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
578
579
    for metric in model.metrics:
      training_summary[metric.name] = _float_metric_value(metric)
580
581
582
583
    if eval_metrics:
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
584

585
    write_txt_summary(training_summary, summary_dir)
586

587
588
589
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

590
591
    callback_list.on_train_end()

592
    return model