cifar10_main.py 8.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23

24
25
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
26
import tensorflow as tf  # pylint: disable=g-bad-import-order
27

28
from official.utils.flags import core as flags_core
29
30
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
31

32
33
_HEIGHT = 32
_WIDTH = 32
34
35
_NUM_CHANNELS = 3
_DEFAULT_IMAGE_BYTES = _HEIGHT * _WIDTH * _NUM_CHANNELS
36
37
# The record is the image plus a one-byte label
_RECORD_BYTES = _DEFAULT_IMAGE_BYTES + 1
38
39
40
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

41
42
43
44
_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
45
46


47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
  """Returns a list of filenames."""
52
  data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
53

54
55
56
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
57

58
  if is_training:
59
60
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
61
        for i in range(1, _NUM_DATA_FILES + 1)
62
63
    ]
  else:
64
    return [os.path.join(data_dir, 'test_batch.bin')]
65
66


67
def parse_record(raw_record, is_training):
Kathy Wu's avatar
Kathy Wu committed
68
  """Parse CIFAR-10 image and label from a raw record."""
69
70
  # Convert bytes to a vector of uint8 that is record_bytes long.
  record_vector = tf.decode_raw(raw_record, tf.uint8)
71

72
73
  # The first byte represents the label, which we convert from uint8 to int32
  # and then to one-hot.
74
  label = tf.cast(record_vector[0], tf.int32)
75
  label = tf.one_hot(label, _NUM_CLASSES)
76
77
78

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
79
  depth_major = tf.reshape(record_vector[1:_RECORD_BYTES],
80
                           [_NUM_CHANNELS, _HEIGHT, _WIDTH])
81
82
83
84
85

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

86
87
  image = preprocess_image(image, is_training)

88
  return image, label
89
90


91
92
93
94
def preprocess_image(image, is_training):
  """Preprocess a single image of layout [height, width, depth]."""
  if is_training:
    # Resize the image to add four extra pixels on each side.
Neal Wu's avatar
Neal Wu committed
95
96
    image = tf.image.resize_image_with_crop_or_pad(
        image, _HEIGHT + 8, _WIDTH + 8)
97

98
    # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
99
    image = tf.random_crop(image, [_HEIGHT, _WIDTH, _NUM_CHANNELS])
Kathy Wu's avatar
Kathy Wu committed
100

101
102
    # Randomly flip the image horizontally.
    image = tf.image.random_flip_left_right(image)
Kathy Wu's avatar
Kathy Wu committed
103
104
105

  # Subtract off the mean and divide by the variance of the pixels.
  image = tf.image.per_image_standardization(image)
106
  return image
Kathy Wu's avatar
Kathy Wu committed
107
108


109
110
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
             num_parallel_calls=1, multi_gpu=False):
111
  """Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
112
113

  Args:
114
    is_training: A boolean denoting whether the input is for training.
Kathy Wu's avatar
Kathy Wu committed
115
    data_dir: The directory containing the input data.
116
    batch_size: The number of samples per batch.
117
    num_epochs: The number of epochs to repeat the dataset.
118
119
120
121
122
123
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.
    multi_gpu: Whether this is run multi-GPU. Note that this is only required
      currently to handle the batch leftovers, and can be removed
      when that is handled directly by Estimator.
124
125

  Returns:
126
    A dataset that can be used for iteration.
127
  """
128
129
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.FixedLengthRecordDataset(filenames, _RECORD_BYTES)
130

131
132
  num_images = is_training and _NUM_IMAGES['train'] or _NUM_IMAGES['validation']

Karmel Allison's avatar
Karmel Allison committed
133
134
  return resnet_run_loop.process_record_dataset(
      dataset, is_training, batch_size, _NUM_IMAGES['train'],
135
136
      parse_record, num_epochs, num_parallel_calls,
      examples_per_epoch=num_images, multi_gpu=multi_gpu)
137
138


139
def get_synth_input_fn():
Karmel Allison's avatar
Karmel Allison committed
140
141
  return resnet_run_loop.get_synth_input_fn(
      _HEIGHT, _WIDTH, _NUM_CHANNELS, _NUM_CLASSES)
142
143


144
145
146
###############################################################################
# Running the model
###############################################################################
147
class Cifar10Model(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
148
  """Model class with appropriate defaults for CIFAR-10 data."""
149

150
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
151
152
               version=resnet_model.DEFAULT_VERSION,
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
153
154
155
156
157
158
159
    """These are the parameters that work for CIFAR-10 data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
160
        enables users to extend the same model to their own datasets.
161
162
      version: Integer representing which version of the ResNet network to use.
        See README for details. Valid values: [1, 2]
163
      dtype: The TensorFlow dtype to use for calculations.
Karmel Allison's avatar
Karmel Allison committed
164
165
166

    Raises:
      ValueError: if invalid resnet_size is chosen
Neal Wu's avatar
Neal Wu committed
167
    """
168
169
170
171
172
173
174
    if resnet_size % 6 != 2:
      raise ValueError('resnet_size must be 6n + 2:', resnet_size)

    num_blocks = (resnet_size - 2) // 6

    super(Cifar10Model, self).__init__(
        resnet_size=resnet_size,
175
        bottleneck=False,
176
        num_classes=num_classes,
177
178
179
180
181
182
183
184
        num_filters=16,
        kernel_size=3,
        conv_stride=1,
        first_pool_size=None,
        first_pool_stride=None,
        block_sizes=[num_blocks] * 3,
        block_strides=[1, 2, 2],
        final_size=64,
185
        version=version,
186
187
188
        data_format=data_format,
        dtype=dtype
    )
189
190


191
192
193
194
def cifar10_model_fn(features, labels, mode, params):
  """Model function for CIFAR-10."""
  features = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _NUM_CHANNELS])

195
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
196
197
198
199
200
201
202
203
204
205
206
207
208
      batch_size=params['batch_size'], batch_denom=128,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[100, 150, 200],
      decay_rates=[1, 0.1, 0.01, 0.001])

  # We use a weight decay of 0.0002, which performs better
  # than the 0.0001 that was originally suggested.
  weight_decay = 2e-4

  # Empirical testing showed that including batch_normalization variables
  # in the calculation of regularized loss helped validation accuracy
  # for the CIFAR-10 dataset, perhaps because the regularization prevents
  # overfitting on the small data set. We therefore include all vars when
  # regularizing and computing loss during training.
Karmel Allison's avatar
Karmel Allison committed
209
  def loss_filter_fn(_):
210
211
    return True

212
213
214
215
216
217
218
219
220
221
222
223
224
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=Cifar10Model,
      resnet_size=params['resnet_size'],
      weight_decay=weight_decay,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
      version=params['version'],
      loss_scale=params['loss_scale'],
      loss_filter_fn=loss_filter_fn,
225
      multi_gpu=params['multi_gpu'],
226
227
      dtype=params['dtype']
  )
228
229


230
231
232
233
234
235
236
237
238
def define_cifar_flags():
  resnet_run_loop.define_resnet_flags()
  flags.adopt_module_key_flags(resnet_run_loop)
  flags_core.set_defaults(data_dir='/tmp/cifar10_data',
                          model_dir='/tmp/cifar10_model',
                          resnet_size='32',
                          train_epochs=250,
                          epochs_between_evals=10,
                          batch_size=128)
239

240

241
242
243
def main(flags_obj):
  input_function = (flags_obj.use_synthetic_data and get_synth_input_fn()
                    or input_fn)
244
245

  resnet_run_loop.resnet_main(
246
      flags_obj, cifar10_model_fn, input_function,
247
      shape=[_HEIGHT, _WIDTH, _NUM_CHANNELS])
248
249
250
251


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
252
253
  define_cifar_flags()
  absl_app.run(main)