cifar10_main.py 9.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
23
import sys
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import tensorflow as tf

import resnet_model

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
                    help='The path to the CIFAR-10 data directory.')

parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
                    help='The directory where the model will be stored.')

parser.add_argument('--resnet_size', type=int, default=32,
                    help='The size of the ResNet model to use.')

41
42
parser.add_argument('--train_epochs', type=int, default=250,
                    help='The number of epochs to train.')
43

44
parser.add_argument('--epochs_per_eval', type=int, default=10,
45
46
47
48
49
                    help='The number of batches to run in between evaluations.')

parser.add_argument('--batch_size', type=int, default=128,
                    help='The number of images per batch.')

50
51
52
53
54
55
_HEIGHT = 32
_WIDTH = 32
_DEPTH = 3
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

56
57
58
# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4
59
_MOMENTUM = 0.9
60

61
62
63
64
_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
65
66
67
68


def record_dataset(filenames):
  """Returns an input pipeline Dataset from `filenames`."""
69
  record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1
70
71
72
  return tf.contrib.data.FixedLengthRecordDataset(filenames, record_bytes)


73
74
def get_filenames(is_training):
  """Returns a list of filenames."""
75
76
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')

77
78
79
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
80

81
  if is_training:
82
83
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
84
        for i in range(1, _NUM_DATA_FILES + 1)
85
86
    ]
  else:
87
    return [os.path.join(data_dir, 'test_batch.bin')]
88
89
90
91
92
93
94


def dataset_parser(value):
  """Parse a CIFAR-10 record from value."""
  # Every record consists of a label followed by the image, with a fixed number
  # of bytes for each.
  label_bytes = 1
95
  image_bytes = _HEIGHT * _WIDTH * _DEPTH
96
97
98
99
100
101
102
103
104
105
106
  record_bytes = label_bytes + image_bytes

  # Convert from a string to a vector of uint8 that is record_bytes long.
  raw_record = tf.decode_raw(value, tf.uint8)

  # The first byte represents the label, which we convert from uint8 to int32.
  label = tf.cast(raw_record[0], tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(raw_record[label_bytes:record_bytes],
107
                           [_DEPTH, _HEIGHT, _WIDTH])
108
109
110
111
112

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

113
  return image, tf.one_hot(label, _NUM_CLASSES)
114
115
116
117
118


def train_preprocess_fn(image, label):
  """Preprocess a single training image of layout [height, width, depth]."""
  # Resize the image to add four extra pixels on each side.
119
  image = tf.image.resize_image_with_crop_or_pad(image, _HEIGHT + 8, _WIDTH + 8)
120

121
122
  # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
  image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])
123
124
125
126
127
128
129

  # Randomly flip the image horizontally.
  image = tf.image.random_flip_left_right(image)

  return image, label


130
def input_fn(is_training, num_epochs=1):
131
132
133
  """Input_fn using the contrib.data input pipeline for CIFAR-10 dataset.

  Args:
134
135
    is_training: A boolean denoting whether the input is for training.
    num_epochs: The number of epochs to repeat the dataset.
136
137
138

  Returns:
    A tuple of images and labels.
139
  """
140
  dataset = record_dataset(get_filenames(is_training))
141
  dataset = dataset.map(dataset_parser, num_threads=1,
142
                        output_buffer_size=2 * FLAGS.batch_size)
143
144

  # For training, preprocess the image and shuffle.
145
  if is_training:
146
    dataset = dataset.map(train_preprocess_fn, num_threads=1,
147
                          output_buffer_size=2 * FLAGS.batch_size)
148
149
150

    # Ensure that the capacity is sufficiently large to provide good random
    # shuffling.
151
    buffer_size = int(0.4 * _NUM_IMAGES['train'])
152
153
154
155
156
157
    dataset = dataset.shuffle(buffer_size=buffer_size)

  # Subtract off the mean and divide by the variance of the pixels.
  dataset = dataset.map(
      lambda image, label: (tf.image.per_image_standardization(image), label),
      num_threads=1,
158
159
160
      output_buffer_size=2 * FLAGS.batch_size)

  dataset = dataset.repeat(num_epochs)
161
162
163

  # Batch results by up to batch_size, and then fetch the tuple from the
  # iterator.
164
  iterator = dataset.batch(FLAGS.batch_size).make_one_shot_iterator()
165
166
167
168
169
170
171
172
173
174
  images, labels = iterator.get_next()

  return images, labels


def cifar10_model_fn(features, labels, mode):
  """Model function for CIFAR-10."""
  tf.summary.image('images', features, max_outputs=6)

  network = resnet_model.cifar10_resnet_v2_generator(
175
      FLAGS.resnet_size, _NUM_CLASSES)
176

177
  inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH])
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN)

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
201
202
203
204
    # Scale the learning rate linearly with the batch size. When the batch size
    # is 128, the learning rate should be 0.1.
    initial_learning_rate = 0.1 * FLAGS.batch_size / 128
    batches_per_epoch = _NUM_IMAGES['train'] / FLAGS.batch_size
205
206
207
    global_step = tf.train.get_or_create_global_step()

    # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
208
209
    boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
    values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update ops to be added as a dependency to the train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

228
  accuracy = tf.metrics.accuracy(
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

248
249
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
250
  cifar_classifier = tf.estimator.Estimator(
251
      model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config)
252

253
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
254
255
256
257
258
259
260
261
262
263
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    cifar_classifier.train(
264
265
        input_fn=lambda: input_fn(
            is_training=True, num_epochs=FLAGS.epochs_per_eval),
266
267
268
269
        hooks=[logging_hook])

    # Evaluate the model and print results
    eval_results = cifar_classifier.evaluate(
270
        input_fn=lambda: input_fn(is_training=False))
271
272
273
274
275
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
276
277
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)