cifar10_main.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
23
import sys
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import tensorflow as tf

import resnet_model

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
                    help='The path to the CIFAR-10 data directory.')

parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
                    help='The directory where the model will be stored.')

parser.add_argument('--resnet_size', type=int, default=32,
                    help='The size of the ResNet model to use.')

41
42
parser.add_argument('--train_epochs', type=int, default=250,
                    help='The number of epochs to train.')
43

44
parser.add_argument('--epochs_per_eval', type=int, default=10,
45
                    help='The number of epochs to run in between evaluations.')
46
47
48
49

parser.add_argument('--batch_size', type=int, default=128,
                    help='The number of images per batch.')

50
51
52
53
54
55
56
57
parser.add_argument(
    '--data_format', type=str, default=None,
    choices=['channels_first', 'channels_last'],
    help='A flag to override the data format used in the model. channels_first '
         'provides a performance boost on GPU but is not always compatible '
         'with CPU. If left unspecified, the data format will be chosen '
         'automatically based on whether TensorFlow was built for CPU or GPU.')

58
59
60
61
62
63
_HEIGHT = 32
_WIDTH = 32
_DEPTH = 3
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

64
65
66
# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4
67
_MOMENTUM = 0.9
68

69
70
71
72
_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
73

74
75
_SHUFFLE_BUFFER = 20000

76
77
78

def record_dataset(filenames):
  """Returns an input pipeline Dataset from `filenames`."""
79
  record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1
80
  return tf.data.FixedLengthRecordDataset(filenames, record_bytes)
81
82


83
def get_filenames(is_training, data_dir):
84
  """Returns a list of filenames."""
85
  data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
86

87
88
89
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
90

91
  if is_training:
92
93
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
94
        for i in range(1, _NUM_DATA_FILES + 1)
95
96
    ]
  else:
97
    return [os.path.join(data_dir, 'test_batch.bin')]
98
99


Kathy Wu's avatar
Kathy Wu committed
100
101
def parse_record(raw_record):
  """Parse CIFAR-10 image and label from a raw record."""
102
103
104
  # Every record consists of a label followed by the image, with a fixed number
  # of bytes for each.
  label_bytes = 1
105
  image_bytes = _HEIGHT * _WIDTH * _DEPTH
106
107
  record_bytes = label_bytes + image_bytes

108
109
  # Convert bytes to a vector of uint8 that is record_bytes long.
  record_vector = tf.decode_raw(raw_record, tf.uint8)
110
111

  # The first byte represents the label, which we convert from uint8 to int32.
112
  label = tf.cast(record_vector[0], tf.int32)
113
114
115

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
116
  depth_major = tf.reshape(record_vector[label_bytes:record_bytes],
117
                           [_DEPTH, _HEIGHT, _WIDTH])
118
119
120
121
122

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

123
  return image, tf.one_hot(label, _NUM_CLASSES)
124
125


126
def train_preprocess_fn(image):
127
128
  """Preprocess a single training image of layout [height, width, depth]."""
  # Resize the image to add four extra pixels on each side.
129
  image = tf.image.resize_image_with_crop_or_pad(image, _HEIGHT + 8, _WIDTH + 8)
130

131
132
  # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
  image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])
133
134
135
136

  # Randomly flip the image horizontally.
  image = tf.image.random_flip_left_right(image)

137
  return image
138
139


Kathy Wu's avatar
Kathy Wu committed
140
141
142
143
144
145
146
147
148
149
150
151
def parse_and_preprocess(record, is_training):
  """Parse and preprocess records in the CIFAR-10 dataset."""
  image, label = parse_record(record)

  if is_training:
    image = train_preprocess_fn(image)

  # Subtract off the mean and divide by the variance of the pixels.
  image = tf.image.per_image_standardization(image)
  return image, label


152
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
153
  """Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
154
155

  Args:
156
    is_training: A boolean denoting whether the input is for training.
Kathy Wu's avatar
Kathy Wu committed
157
    data_dir: The directory containing the input data.
158
    batch_size: The number of samples per batch.
159
    num_epochs: The number of epochs to repeat the dataset.
160
161
162

  Returns:
    A tuple of images and labels.
163
  """
164
  dataset = record_dataset(get_filenames(is_training, data_dir))
165

166
  if is_training:
167
168
169
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes have better performance.
    dataset = dataset.shuffle(buffer_size=_SHUFFLE_BUFFER)
170
171

  dataset = dataset.map(
Kathy Wu's avatar
Kathy Wu committed
172
      lambda record: parse_and_preprocess(record, is_training))
173
  dataset = dataset.prefetch(2 * batch_size)
174

Neal Wu's avatar
Neal Wu committed
175
176
  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
177
  dataset = dataset.repeat(num_epochs)
178
179
180

  # Batch results by up to batch_size, and then fetch the tuple from the
  # iterator.
Neal Wu's avatar
Neal Wu committed
181
182
  dataset = dataset.batch(batch_size)
  iterator = dataset.make_one_shot_iterator()
183
184
185
186
187
  images, labels = iterator.get_next()

  return images, labels


188
def cifar10_model_fn(features, labels, mode, params):
189
190
191
192
  """Model function for CIFAR-10."""
  tf.summary.image('images', features, max_outputs=6)

  network = resnet_model.cifar10_resnet_v2_generator(
193
      params['resnet_size'], _NUM_CLASSES, params['data_format'])
194

195
  inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH])
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN)

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
219
220
    # Scale the learning rate linearly with the batch size. When the batch size
    # is 128, the learning rate should be 0.1.
221
222
    initial_learning_rate = 0.1 * params['batch_size'] / 128
    batches_per_epoch = _NUM_IMAGES['train'] / params['batch_size']
223
224
225
    global_step = tf.train.get_or_create_global_step()

    # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
226
227
    boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
    values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update ops to be added as a dependency to the train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

246
  accuracy = tf.metrics.accuracy(
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

266
267
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
268
  cifar_classifier = tf.estimator.Estimator(
269
270
271
272
273
274
      model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config,
      params={
          'resnet_size': FLAGS.resnet_size,
          'data_format': FLAGS.data_format,
          'batch_size': FLAGS.batch_size,
      })
275

276
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
277
278
279
280
281
282
283
284
285
286
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    cifar_classifier.train(
287
        input_fn=lambda: input_fn(
288
            True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
289
290
291
292
        hooks=[logging_hook])

    # Evaluate the model and print results
    eval_results = cifar_classifier.evaluate(
293
        input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))
294
295
296
297
298
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
299
300
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)