cifar10_main.py 10 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
23
import sys
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import tensorflow as tf

import resnet_model

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
                    help='The path to the CIFAR-10 data directory.')

parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
                    help='The directory where the model will be stored.')

parser.add_argument('--resnet_size', type=int, default=32,
                    help='The size of the ResNet model to use.')

41
42
parser.add_argument('--train_epochs', type=int, default=250,
                    help='The number of epochs to train.')
43

44
parser.add_argument('--epochs_per_eval', type=int, default=10,
45
                    help='The number of epochs to run in between evaluations.')
46
47
48
49

parser.add_argument('--batch_size', type=int, default=128,
                    help='The number of images per batch.')

50
51
52
53
54
55
56
57
parser.add_argument(
    '--data_format', type=str, default=None,
    choices=['channels_first', 'channels_last'],
    help='A flag to override the data format used in the model. channels_first '
         'provides a performance boost on GPU but is not always compatible '
         'with CPU. If left unspecified, the data format will be chosen '
         'automatically based on whether TensorFlow was built for CPU or GPU.')

58
59
60
61
62
63
_HEIGHT = 32
_WIDTH = 32
_DEPTH = 3
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

64
65
66
# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4
67
_MOMENTUM = 0.9
68

69
70
71
72
_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
73

74
75
_SHUFFLE_BUFFER = 20000

76
77
78

def record_dataset(filenames):
  """Returns an input pipeline Dataset from `filenames`."""
79
  record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1
80
  return tf.data.FixedLengthRecordDataset(filenames, record_bytes)
81
82


83
def get_filenames(is_training, data_dir):
84
  """Returns a list of filenames."""
85
  data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
86

87
88
89
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
90

91
  if is_training:
92
93
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
94
        for i in range(1, _NUM_DATA_FILES + 1)
95
96
    ]
  else:
97
    return [os.path.join(data_dir, 'test_batch.bin')]
98
99
100
101
102
103
104


def dataset_parser(value):
  """Parse a CIFAR-10 record from value."""
  # Every record consists of a label followed by the image, with a fixed number
  # of bytes for each.
  label_bytes = 1
105
  image_bytes = _HEIGHT * _WIDTH * _DEPTH
106
107
108
109
110
111
112
113
114
115
116
  record_bytes = label_bytes + image_bytes

  # Convert from a string to a vector of uint8 that is record_bytes long.
  raw_record = tf.decode_raw(value, tf.uint8)

  # The first byte represents the label, which we convert from uint8 to int32.
  label = tf.cast(raw_record[0], tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(raw_record[label_bytes:record_bytes],
117
                           [_DEPTH, _HEIGHT, _WIDTH])
118
119
120
121
122

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

123
  return image, tf.one_hot(label, _NUM_CLASSES)
124
125
126
127
128


def train_preprocess_fn(image, label):
  """Preprocess a single training image of layout [height, width, depth]."""
  # Resize the image to add four extra pixels on each side.
129
  image = tf.image.resize_image_with_crop_or_pad(image, _HEIGHT + 8, _WIDTH + 8)
130

131
132
  # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
  image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])
133
134
135
136
137
138
139

  # Randomly flip the image horizontally.
  image = tf.image.random_flip_left_right(image)

  return image, label


140
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
141
  """Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
142
143

  Args:
144
145
    is_training: A boolean denoting whether the input is for training.
    num_epochs: The number of epochs to repeat the dataset.
146
147
148

  Returns:
    A tuple of images and labels.
149
  """
150
  dataset = record_dataset(get_filenames(is_training, data_dir))
151
  dataset = dataset.map(dataset_parser)
152
153

  # For training, preprocess the image and shuffle.
154
  if is_training:
155
    dataset = dataset.map(train_preprocess_fn)
156

157
158
159
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes have better performance.
    dataset = dataset.shuffle(buffer_size=_SHUFFLE_BUFFER)
160
161
162

  # Subtract off the mean and divide by the variance of the pixels.
  dataset = dataset.map(
163
      lambda image, label: (tf.image.per_image_standardization(image), label))
164

Neal Wu's avatar
Neal Wu committed
165
166
  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
167
  dataset = dataset.repeat(num_epochs)
168
169
170

  # Batch results by up to batch_size, and then fetch the tuple from the
  # iterator.
Neal Wu's avatar
Neal Wu committed
171
172
  dataset = dataset.batch(batch_size)
  iterator = dataset.make_one_shot_iterator()
173
174
175
176
177
  images, labels = iterator.get_next()

  return images, labels


178
def cifar10_model_fn(features, labels, mode, params):
179
180
181
182
  """Model function for CIFAR-10."""
  tf.summary.image('images', features, max_outputs=6)

  network = resnet_model.cifar10_resnet_v2_generator(
183
      params['resnet_size'], _NUM_CLASSES, params['data_format'])
184

185
  inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH])
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
  logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN)

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
209
210
    # Scale the learning rate linearly with the batch size. When the batch size
    # is 128, the learning rate should be 0.1.
211
212
    initial_learning_rate = 0.1 * params['batch_size'] / 128
    batches_per_epoch = _NUM_IMAGES['train'] / params['batch_size']
213
214
215
    global_step = tf.train.get_or_create_global_step()

    # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
216
217
    boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
    values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update ops to be added as a dependency to the train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

236
  accuracy = tf.metrics.accuracy(
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

256
257
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
258
  cifar_classifier = tf.estimator.Estimator(
259
260
261
262
263
264
      model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config,
      params={
          'resnet_size': FLAGS.resnet_size,
          'data_format': FLAGS.data_format,
          'batch_size': FLAGS.batch_size,
      })
265

266
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
267
268
269
270
271
272
273
274
275
276
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    cifar_classifier.train(
277
        input_fn=lambda: input_fn(
278
            True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
279
280
281
282
        hooks=[logging_hook])

    # Evaluate the model and print results
    eval_results = cifar_classifier.evaluate(
283
        input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))
284
285
286
287
288
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
289
290
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)