cifar10_main.py 9.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
23
import sys
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import tensorflow as tf

import resnet_model

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
                    help='The path to the CIFAR-10 data directory.')

parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
                    help='The directory where the model will be stored.')

parser.add_argument('--resnet_size', type=int, default=32,
                    help='The size of the ResNet model to use.')

41
42
parser.add_argument('--train_epochs', type=int, default=250,
                    help='The number of epochs to train.')
43

44
parser.add_argument('--epochs_per_eval', type=int, default=10,
45
                    help='The number of epochs to run in between evaluations.')
46
47
48
49

parser.add_argument('--batch_size', type=int, default=128,
                    help='The number of images per batch.')

50
51
52
53
54
55
56
57
parser.add_argument(
    '--data_format', type=str, default=None,
    choices=['channels_first', 'channels_last'],
    help='A flag to override the data format used in the model. channels_first '
         'provides a performance boost on GPU but is not always compatible '
         'with CPU. If left unspecified, the data format will be chosen '
         'automatically based on whether TensorFlow was built for CPU or GPU.')

58
59
60
61
62
63
_HEIGHT = 32
_WIDTH = 32
_DEPTH = 3
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

64
65
66
# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4
67
_MOMENTUM = 0.9
68

69
70
71
72
_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
73
74
75
76


def record_dataset(filenames):
  """Returns an input pipeline Dataset from `filenames`."""
77
  record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1
78
79
80
  return tf.contrib.data.FixedLengthRecordDataset(filenames, record_bytes)


81
82
def get_filenames(is_training):
  """Returns a list of filenames."""
83
84
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')

85
86
87
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
88

89
  if is_training:
90
91
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
92
        for i in range(1, _NUM_DATA_FILES + 1)
93
94
    ]
  else:
95
    return [os.path.join(data_dir, 'test_batch.bin')]
96
97
98
99
100
101
102


def dataset_parser(value):
  """Parse a CIFAR-10 record from value."""
  # Every record consists of a label followed by the image, with a fixed number
  # of bytes for each.
  label_bytes = 1
103
  image_bytes = _HEIGHT * _WIDTH * _DEPTH
104
105
106
107
108
109
110
111
112
113
114
  record_bytes = label_bytes + image_bytes

  # Convert from a string to a vector of uint8 that is record_bytes long.
  raw_record = tf.decode_raw(value, tf.uint8)

  # The first byte represents the label, which we convert from uint8 to int32.
  label = tf.cast(raw_record[0], tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(raw_record[label_bytes:record_bytes],
115
                           [_DEPTH, _HEIGHT, _WIDTH])
116
117
118
119
120

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

121
  return image, tf.one_hot(label, _NUM_CLASSES)
122
123
124
125
126


def train_preprocess_fn(image, label):
  """Preprocess a single training image of layout [height, width, depth]."""
  # Resize the image to add four extra pixels on each side.
127
  image = tf.image.resize_image_with_crop_or_pad(image, _HEIGHT + 8, _WIDTH + 8)
128

129
130
  # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
  image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])
131
132
133
134
135
136
137

  # Randomly flip the image horizontally.
  image = tf.image.random_flip_left_right(image)

  return image, label


138
def input_fn(is_training, num_epochs=1):
139
140
141
  """Input_fn using the contrib.data input pipeline for CIFAR-10 dataset.

  Args:
142
143
    is_training: A boolean denoting whether the input is for training.
    num_epochs: The number of epochs to repeat the dataset.
144
145
146

  Returns:
    A tuple of images and labels.
147
  """
148
  dataset = record_dataset(get_filenames(is_training))
149
  dataset = dataset.map(dataset_parser, num_threads=1,
150
                        output_buffer_size=2 * FLAGS.batch_size)
151
152

  # For training, preprocess the image and shuffle.
153
  if is_training:
154
    dataset = dataset.map(train_preprocess_fn, num_threads=1,
155
                          output_buffer_size=2 * FLAGS.batch_size)
156
157
158

    # Ensure that the capacity is sufficiently large to provide good random
    # shuffling.
159
    buffer_size = int(0.4 * _NUM_IMAGES['train'])
160
161
162
163
164
165
    dataset = dataset.shuffle(buffer_size=buffer_size)

  # Subtract off the mean and divide by the variance of the pixels.
  dataset = dataset.map(
      lambda image, label: (tf.image.per_image_standardization(image), label),
      num_threads=1,
166
167
168
      output_buffer_size=2 * FLAGS.batch_size)

  dataset = dataset.repeat(num_epochs)
169
170
171

  # Batch results by up to batch_size, and then fetch the tuple from the
  # iterator.
172
  iterator = dataset.batch(FLAGS.batch_size).make_one_shot_iterator()
173
174
175
176
177
178
179
180
181
182
  images, labels = iterator.get_next()

  return images, labels


def cifar10_model_fn(features, labels, mode):
  """Model function for CIFAR-10."""
  tf.summary.image('images', features, max_outputs=6)

  network = resnet_model.cifar10_resnet_v2_generator(
183
      FLAGS.resnet_size, _NUM_CLASSES, FLAGS.data_format)
184

185
  inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH])
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
  logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN)

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
209
210
211
212
    # Scale the learning rate linearly with the batch size. When the batch size
    # is 128, the learning rate should be 0.1.
    initial_learning_rate = 0.1 * FLAGS.batch_size / 128
    batches_per_epoch = _NUM_IMAGES['train'] / FLAGS.batch_size
213
214
215
    global_step = tf.train.get_or_create_global_step()

    # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
216
217
    boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
    values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update ops to be added as a dependency to the train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

236
  accuracy = tf.metrics.accuracy(
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

256
257
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
258
  cifar_classifier = tf.estimator.Estimator(
259
      model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config)
260

261
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
262
263
264
265
266
267
268
269
270
271
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    cifar_classifier.train(
272
273
        input_fn=lambda: input_fn(
            is_training=True, num_epochs=FLAGS.epochs_per_eval),
274
275
276
277
        hooks=[logging_hook])

    # Evaluate the model and print results
    eval_results = cifar_classifier.evaluate(
278
        input_fn=lambda: input_fn(is_training=False))
279
280
281
282
283
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
284
285
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)