resnet_run_loop.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.

  This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Taylor Robie's avatar
Taylor Robie committed
26
import math
27
28
import os

29
# pylint: disable=g-bad-import-order
30
from absl import flags
31
import tensorflow as tf
32
33

from official.resnet import resnet_model
34
from official.utils.flags import core as flags_core
35
from official.utils.export import export
36
37
from official.utils.logs import hooks_helper
from official.utils.logs import logger
38
from official.utils.misc import distribution_utils
39
from official.utils.misc import model_helpers
40
# pylint: enable=g-bad-import-order
41
42
43
44
45
46


################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
Taylor Robie's avatar
Taylor Robie committed
47
                           parse_record_fn, num_epochs=1, num_gpus=None,
48
                           examples_per_epoch=None, dtype=tf.float32):
Karmel Allison's avatar
Karmel Allison committed
49
  """Given a Dataset with raw records, return an iterator over the records.
50
51
52
53
54
55
56
57
58
59
60

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
Taylor Robie's avatar
Taylor Robie committed
61
62
    num_gpus: The number of gpus used for training.
    examples_per_epoch: The number of examples in an epoch.
63
    dtype: Data type to use for images/features.
64
65
66
67

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
68

69
70
71
72
73
74
75
76
77
78
79
80
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

Taylor Robie's avatar
Taylor Robie committed
81
82
83
84
85
86
87
88
89
90
  if is_training and num_gpus and examples_per_epoch:
    total_examples = num_epochs * examples_per_epoch
    # Force the number of batches to be divisible by the number of devices.
    # This prevents some devices from receiving batches while others do not,
    # which can lead to a lockup. This case will soon be handled directly by
    # distribution strategies, at which point this .take() operation will no
    # longer be needed.
    total_batches = total_examples // batch_size // num_gpus * num_gpus
    dataset.take(total_batches * batch_size)

91
92
93
94
95
  # Parse the raw records into images and labels. Testing has shown that setting
  # num_parallel_batches > 1 produces no improvement in throughput, since
  # batch_size is almost always much greater than the number of CPU cores.
  dataset = dataset.apply(
      tf.contrib.data.map_and_batch(
96
          lambda value: parse_record_fn(value, is_training, dtype),
97
          batch_size=batch_size,
98
          num_parallel_batches=1,
99
          drop_remainder=False))
100
101
102
103

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
104
105
106
  # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
107
  dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
108
109
110
111

  return dataset


Toby Boyd's avatar
Toby Boyd committed
112
113
114
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.
115

Toby Boyd's avatar
Toby Boyd committed
116
117
118
119
  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
  tunning the full input pipeline.
120
121
122
123
124
125
126

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
Toby Boyd's avatar
Toby Boyd committed
127
    dtype: Data type for features/images.
128
129
130
131
132

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
Toby Boyd's avatar
Toby Boyd committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data
153
154
155
156
157
158
159
160

  return input_fn


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
161
162
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
    base_lr=0.1, warmup=False):
163
164
165
166
167
168
169
170
171
172
173
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
174
175
      for scaling the learning rate. It should have one more element
      than `boundary_epochs`, and all elements should have the same type.
176
177
    base_lr: Initial learning rate scaled based on batch_denom.
    warmup: Run a 5 epoch warmup to the initial lr.
178
179
180
181
182
  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
183
  initial_learning_rate = base_lr * batch_size / batch_denom
184
185
  batches_per_epoch = num_images / batch_size

Taylor Robie's avatar
Taylor Robie committed
186
187
188
  # Reduce the learning rate at certain epochs.
  # CIFAR-10: divide by 10 at epoch 100, 150, and 200
  # ImageNet: divide by 10 at epoch 30, 60, 80, and 90
189
190
191
192
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
193
194
195
196
197
198
199
200
201
    """Builds scaled learning rate function with 5 epoch warm up."""
    lr = tf.train.piecewise_constant(global_step, boundaries, vals)
    if warmup:
      warmup_steps = int(batches_per_epoch * 5)
      warmup_lr = (
          initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
              warmup_steps, tf.float32))
      return tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
    return lr
202
203
204
205
206
207

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
208
                    data_format, resnet_version, loss_scale,
Zac Wellmer's avatar
Zac Wellmer committed
209
210
                    loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
                    fine_tune=False):
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
234
235
    resnet_version: Integer representing which version of the ResNet network to
      use. See README for details. Valid values: [1, 2]
236
237
    loss_scale: The factor to scale the loss for numerical stability. A detailed
      summary is present in the arg parser help text.
238
239
240
241
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
242
    dtype: the TensorFlow dtype to use for calculations.
Zac Wellmer's avatar
Zac Wellmer committed
243
    fine_tune: If True only train the dense layers(final layers).
244
245
246
247
248
249
250
251

  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)
252
253
  # Checks that features/images have same data type being used for calculations.
  assert features.dtype == dtype
254

255
256
  model = model_class(resnet_size, data_format, resnet_version=resnet_version,
                      dtype=dtype)
257

258
259
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

260
261
262
263
264
  # This acts as a no-op if the logits are already in fp32 (provided logits are
  # not a SparseTensor). If dtype is is low precision, logits must be cast to
  # fp32 for numerical stability.
  logits = tf.cast(logits, tf.float32)

265
266
267
268
269
270
  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
271
272
273
274
275
276
277
    # Return the predictions and the specification for serving a SavedModel
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'predict': tf.estimator.export.PredictOutput(predictions)
        })
278
279

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
280
281
  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=logits, labels=labels)
282
283
284
285
286
287
288

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
Karmel Allison's avatar
Karmel Allison committed
289
290
291
  def exclude_batch_norm(name):
    return 'batch_normalization' not in name
  loss_filter_fn = loss_filter_fn or exclude_batch_norm
292
293

  # Add weight decay to the loss.
294
  l2_loss = weight_decay * tf.add_n(
295
296
      # loss is computed using fp32 for numerical stability.
      [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
297
       if loss_filter_fn(v.name)])
298
299
  tf.summary.scalar('l2_loss', l2_loss)
  loss = cross_entropy + l2_loss
300
301
302
303
304
305
306
307
308
309
310
311

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
312
313
        momentum=momentum
    )
314

Zac Wellmer's avatar
Zac Wellmer committed
315
    def _dense_grad_filter(gvs):
316
317
318
319
      """Only apply gradient updates to the final layer.

      This function is used for fine tuning.

Zac Wellmer's avatar
Zac Wellmer committed
320
      Args:
321
        gvs: list of tuples with gradients and variable info
Zac Wellmer's avatar
Zac Wellmer committed
322
      Returns:
323
324
        filtered gradients so that only the dense layer remains
      """
Zac Wellmer's avatar
Zac Wellmer committed
325
326
      return [(g, v) for g, v in gvs if 'dense' in v.name]

327
328
329
330
331
332
    if loss_scale != 1:
      # When computing fp16 gradients, often intermediate tensor values are
      # so small, they underflow to 0. To avoid this, we multiply the loss by
      # loss_scale to make these tensor values loss_scale times bigger.
      scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)

Zac Wellmer's avatar
Zac Wellmer committed
333
334
335
      if fine_tune:
        scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)

336
337
338
339
340
341
      # Once the gradient computation is complete we can scale the gradients
      # back to the correct scale before passing them to the optimizer.
      unscaled_grad_vars = [(grad / loss_scale, var)
                            for grad, var in scaled_grad_vars]
      minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
    else:
Zac Wellmer's avatar
Zac Wellmer committed
342
343
344
345
      grad_vars = optimizer.compute_gradients(loss)
      if fine_tune:
        grad_vars = _dense_grad_filter(grad_vars)
      minimize_op = optimizer.apply_gradients(grad_vars, global_step)
346

347
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
348
    train_op = tf.group(minimize_op, update_ops)
349
350
351
  else:
    train_op = None

352
  accuracy = tf.metrics.accuracy(labels, predictions['classes'])
353
354
355
356
357
358
  accuracy_top_5 = tf.metrics.mean(tf.nn.in_top_k(predictions=logits,
                                                  targets=labels,
                                                  k=5,
                                                  name='top_5_op'))
  metrics = {'accuracy': accuracy,
             'accuracy_top_5': accuracy_top_5}
359
360
361

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
362
  tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
363
  tf.summary.scalar('train_accuracy', accuracy[1])
364
  tf.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
365
366
367
368
369
370
371
372
373

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


374
375
def resnet_main(
    flags_obj, model_function, input_function, dataset_name, shape=None):
376
377
378
  """Shared main loop for ResNet Models.

  Args:
379
380
    flags_obj: An object containing parsed flags. See define_resnet_flags()
      for details.
381
382
383
384
385
    model_function: the function that instantiates the Model and builds the
      ops for train/eval. This will be passed directly into the estimator.
    input_function: the function that processes the dataset and returns a
      dataset that the estimator can train on. This will be wrapped with
      all the relevant flags for running and passed to estimator.
386
387
    dataset_name: the name of the dataset for training and evaluation. This is
      used for logging purpose.
388
    shape: list of ints representing the shape of the images used for training.
389
      This is only used if flags_obj.export_dir is passed.
390
  """
Karmel Allison's avatar
Karmel Allison committed
391

392
393
  model_helpers.apply_clean(flags.FLAGS)

394
395
396
397
398
399
400
401
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  # Create session config based on values of inter_op_parallelism_threads and
  # intra_op_parallelism_threads. Note that we default to having
  # allow_soft_placement = True, which is required for multi-GPU and not
  # harmful for other modes.
  session_config = tf.ConfigProto(
402
403
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
404
405
      allow_soft_placement=True)

406
407
  distribution_strategy = distribution_utils.get_distribution_strategy(
      flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg)
408

409
410
  run_config = tf.estimator.RunConfig(
      train_distribute=distribution_strategy, session_config=session_config)
411

Zac Wellmer's avatar
Zac Wellmer committed
412
413
414
415
416
417
418
419
  # initialize our model with all but the dense layer from pretrained resnet
  if flags_obj.pretrained_model_checkpoint_path is not None:
    warm_start_settings = tf.estimator.WarmStartSettings(
        flags_obj.pretrained_model_checkpoint_path,
        vars_to_warm_start='^(?!.*dense)')
  else:
    warm_start_settings = None

420
  classifier = tf.estimator.Estimator(
421
      model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
Zac Wellmer's avatar
Zac Wellmer committed
422
      warm_start_from=warm_start_settings, params={
423
424
425
          'resnet_size': int(flags_obj.resnet_size),
          'data_format': flags_obj.data_format,
          'batch_size': flags_obj.batch_size,
426
          'resnet_version': int(flags_obj.resnet_version),
427
          'loss_scale': flags_core.get_loss_scale(flags_obj),
Zac Wellmer's avatar
Zac Wellmer committed
428
429
          'dtype': flags_core.get_tf_dtype(flags_obj),
          'fine_tune': flags_obj.fine_tune
430
431
      })

432
433
434
435
  run_params = {
      'batch_size': flags_obj.batch_size,
      'dtype': flags_core.get_tf_dtype(flags_obj),
      'resnet_size': flags_obj.resnet_size,
436
      'resnet_version': flags_obj.resnet_version,
437
438
439
      'synthetic_data': flags_obj.use_synthetic_data,
      'train_epochs': flags_obj.train_epochs,
  }
440
  if flags_obj.use_synthetic_data:
441
    dataset_name = dataset_name + '-synthetic'
442

443
  benchmark_logger = logger.get_benchmark_logger()
444
445
  benchmark_logger.log_run_info('resnet', dataset_name, run_params,
                                test_id=flags_obj.benchmark_test_id)
446

447
  train_hooks = hooks_helper.get_train_hooks(
448
      flags_obj.hooks,
449
      model_dir=flags_obj.model_dir,
450
      batch_size=flags_obj.batch_size)
451

Taylor Robie's avatar
Taylor Robie committed
452
  def input_fn_train(num_epochs):
453
454
    return input_function(
        is_training=True, data_dir=flags_obj.data_dir,
455
        batch_size=distribution_utils.per_device_batch_size(
456
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
Taylor Robie's avatar
Taylor Robie committed
457
        num_epochs=num_epochs,
458
459
        num_gpus=flags_core.get_num_gpus(flags_obj),
        dtype=flags_core.get_tf_dtype(flags_obj))
460

461
  def input_fn_eval():
462
463
    return input_function(
        is_training=False, data_dir=flags_obj.data_dir,
464
        batch_size=distribution_utils.per_device_batch_size(
465
            flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
466
467
        num_epochs=1,
        dtype=flags_core.get_tf_dtype(flags_obj))
Taylor Robie's avatar
Taylor Robie committed
468

Taylor Robie's avatar
Taylor Robie committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
  if flags_obj.eval_only or not flags_obj.train_epochs:
    # If --eval_only is set, perform a single loop with zero train epochs.
    schedule, n_loops = [0], 1
  else:
    # Compute the number of times to loop while training. All but the last
    # pass will train for `epochs_between_evals` epochs, while the last will
    # train for the number needed to reach `training_epochs`. For instance if
    #   train_epochs = 25 and epochs_between_evals = 10
    # schedule will be set to [10, 10, 5]. That is to say, the loop will:
    #   Train for 10 epochs and then evaluate.
    #   Train for another 10 epochs and then evaluate.
    #   Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
    n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals)
    schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
    schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1])  # over counting.

  for cycle_index, num_train_epochs in enumerate(schedule):
    tf.logging.info('Starting cycle: %d/%d', cycle_index, int(n_loops))

    if num_train_epochs:
      classifier.train(input_fn=lambda: input_fn_train(num_train_epochs),
                       hooks=train_hooks, max_steps=flags_obj.max_train_steps)
491

492
    tf.logging.info('Starting to evaluate.')
493
494
495
496
497

    # flags_obj.max_train_steps is generally associated with testing and
    # profiling. As a result it is frequently called with synthetic data, which
    # will iterate forever. Passing steps=flags_obj.max_train_steps allows the
    # eval (which is generally unimportant in those circumstances) to terminate.
498
499
500
    # Note that eval will run for max_train_steps each loop, regardless of the
    # global_step count.
    eval_results = classifier.evaluate(input_fn=input_fn_eval,
501
                                       steps=flags_obj.max_train_steps)
502

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
503
    benchmark_logger.log_evaluation_result(eval_results)
504

505
    if model_helpers.past_stop_threshold(
506
        flags_obj.stop_threshold, eval_results['accuracy']):
507
508
      break

509
  if flags_obj.export_dir is not None:
510
511
    # Exports a saved model for the given classifier.
    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
512
513
        shape, batch_size=flags_obj.batch_size)
    classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn)
514
515


516
517
518
def define_resnet_flags(resnet_size_choices=None):
  """Add flags and validators for ResNet."""
  flags_core.define_base()
519
  flags_core.define_performance(num_parallel_calls=False)
520
521
522
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
523

524
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
525
      name='resnet_version', short_name='rv', default='1',
526
      enum_values=['1', '2'],
527
528
      help=flags_core.help_wrap(
          'Version of ResNet. (1 or 2) See README.md for details.'))
Zac Wellmer's avatar
Zac Wellmer committed
529
530
531
532
533
534
535
536
537
  flags.DEFINE_bool(
      name='fine_tune', short_name='ft', default=False,
      help=flags_core.help_wrap(
          'If True do not train any parameters except for the final layer.'))
  flags.DEFINE_string(
      name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
      help=flags_core.help_wrap(
          'If not None initialize all the network except the final layer with '
          'these values'))
Taylor Robie's avatar
Taylor Robie committed
538
  flags.DEFINE_boolean(
539
      name='eval_only', default=False,
Taylor Robie's avatar
Taylor Robie committed
540
541
      help=flags_core.help_wrap('Skip training and only perform evaluation on '
                                'the latest checkpoint.'))
542

543
544
545
  choice_kwargs = dict(
      name='resnet_size', short_name='rs', default='50',
      help=flags_core.help_wrap('The size of the ResNet model to use.'))
546

547
548
549
550
  if resnet_size_choices is None:
    flags.DEFINE_string(**choice_kwargs)
  else:
    flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)