imagenet_main.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23

Karmel Allison's avatar
Karmel Allison committed
24
import tensorflow as tf  # pylint: disable=g-bad-import-order
25

26
from official.resnet import imagenet_preprocessing
27
28
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
29

30
_DEFAULT_IMAGE_SIZE = 224
31
_NUM_CHANNELS = 3
32
_NUM_CLASSES = 1001
33

34
35
36
37
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
38

39
_NUM_TRAIN_FILES = 1024
40
_SHUFFLE_BUFFER = 1500
41

42

43
44
45
###############################################################################
# Data processing
###############################################################################
46
def get_filenames(is_training, data_dir):
47
48
49
  """Return filenames for dataset."""
  if is_training:
    return [
50
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
51
        for i in range(_NUM_TRAIN_FILES)]
52
53
  else:
    return [
54
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
55
        for i in range(128)]
56
57


58
59
60
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
80
81
82
83
84
85
86

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
87
88
89
90
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
91
92
93
94
95
96
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
97
98
99
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
100
  }
101
102
103
104
105
106
107
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
108

109
  features = tf.parse_single_example(example_serialized, feature_map)
110
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
126
127
128
129
130
131
132
133
134
135
136
137


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
138

139
140
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
141
142
143
144
145
146
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
147
148
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
149
      num_channels=_NUM_CHANNELS,
150
151
      is_training=is_training)

152
  label = tf.one_hot(tf.reshape(label, shape=[]), _NUM_CLASSES)
153

154
  return image, label
155
156


157
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
158
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
159

160
161
162
163
164
165
166
167
168
169
170
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
171

172
  if is_training:
173
174
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
175

176
  # Convert to individual records
177
  dataset = dataset.flat_map(tf.data.TFRecordDataset)
178

179
  return resnet_run_loop.process_record_dataset(
180
      dataset, is_training, batch_size, _SHUFFLE_BUFFER, parse_record,
181
182
      num_epochs
  )
183
184
185


def get_synth_input_fn():
186
  return resnet_run_loop.get_synth_input_fn(
Karmel Allison's avatar
Karmel Allison committed
187
      _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES)
188
189


190
191
192
###############################################################################
# Running the model
###############################################################################
193
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
194
  """Model class with appropriate defaults for Imagenet data."""
195

196
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
197
198
               version=resnet_model.DEFAULT_VERSION,
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
199
200
201
202
203
204
205
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
206
        enables users to extend the same model to their own datasets.
207
208
      version: Integer representing which version of the ResNet network to use.
        See README for details. Valid values: [1, 2]
209
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
210
    """
211
212
213

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
214
      bottleneck = False
215
216
      final_size = 512
    else:
217
      bottleneck = True
218
219
220
221
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
222
        bottleneck=bottleneck,
223
        num_classes=num_classes,
224
225
226
227
228
229
230
231
232
233
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        second_pool_size=7,
        second_pool_stride=1,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
234
        version=version,
235
236
237
        data_format=data_format,
        dtype=dtype
    )
238
239
240


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
241
242
243
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
244
245
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
246
247
248
249
250
251
252
253
254

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
255
256
257
258
259
260
261
262
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
263
264
  }

265
266
267
268
269
270
271
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
272
273


274
275
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
276
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
277
278
279
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
      weight_decay=1e-4,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
      version=params['version'],
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
      dtype=params['dtype']
  )
296
297


298
299
300
def main(argv):
  parser = resnet_run_loop.ResnetArgParser(
      resnet_size_choices=[18, 34, 50, 101, 152, 200])
301
302
303
304
305

  parser.set_defaults(
      train_epochs=100
  )

306
307
308
  flags = parser.parse_args(args=argv[1:])

  input_function = flags.use_synthetic_data and get_synth_input_fn() or input_fn
309
310
311
312

  resnet_run_loop.resnet_main(
      flags, imagenet_model_fn, input_function,
      shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
313
314
315
316


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
317
  main(argv=sys.argv)