lowering.cpp 19.1 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
25
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
26
#include <migraphx/gpu/elu.hpp>
27
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
28
#include <migraphx/gpu/gemm.hpp>
29
#include <migraphx/gpu/greater.hpp>
30
#include <migraphx/gpu/int8_conv_pack.hpp>
31
#include <migraphx/gpu/leaky_relu.hpp>
32
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
36
37
38
39
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
40
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
41
#include <migraphx/gpu/where.hpp>
42
#include <migraphx/iterator_for.hpp>
43
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
44
#include <utility>
45
#include <functional>
Khalique's avatar
Khalique committed
46
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
47
#include <map>
Paul's avatar
Paul committed
48

Paul's avatar
Paul committed
49
namespace migraphx {
Paul's avatar
Paul committed
50
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
51
namespace gpu {
Paul's avatar
Paul committed
52
53
54

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
55
    module* mod          = nullptr;
56
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
57
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
58
    instruction_ref last{};
59
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
60
61
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
62

63
    context& get_context() const
64
65
66
67
68
69
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
70
71
72
73
74
75
76
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

77
78
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
79
        this->last = instruction::get_output_alias(std::prev(mod->end()));
80
81
        if(this->last->name() == "@return")
        {
82
            const auto& prog_outputs = last->inputs();
83
84
85
86
87
88
89
90
91
92
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
93
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
94
95
96
97
            }
        }
    }

98
99
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
100
        assert(mod != nullptr);
101
        assert(pass != nullptr);
102

Shucai Xiao's avatar
Shucai Xiao committed
103
104
105
106
107
108
109
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
110
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
111
        create_output_names();
Paul's avatar
Paul committed
112

113
114
115
116
117
118
119
120
121
122
123
124
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
125
        add_generic_op("equal");
126
127
128
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
129
130
        add_generic_op("greater");
        add_generic_op("less");
131
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
132
133
134
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
135
136
137
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
138
        add_generic_op("not");
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
154
        add_generic_op("where");
155

Shucai Xiao's avatar
Shucai Xiao committed
156
        add_extend_op("abs");
157
158
159
160
161
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
162
        add_extend_op("elu");
163
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
164
        add_extend_op("leaky_relu");
165
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_extend_op("lrn");
turneram's avatar
turneram committed
167
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("nonzero");
169
        add_extend_op("pad");
170
        add_extend_op("pooling");
171
        add_extend_op("prefix_scan_sum");
172
173
174
175
176
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
177
        add_extend_op("reverse");
178
179
180
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
181
        add_extend_op("scatter");
182
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op("topk");
184

Shucai Xiao's avatar
Shucai Xiao committed
185
        add_batch_norm_inference_op();
186
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
187
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
188
189
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
190
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
191
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
192
193
        add_neg_op();
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
194
        add_roialign();
195
196
    }

197
198
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
199
        if(not offload_copy)
200
            return;
201

Shucai Xiao's avatar
Shucai Xiao committed
202
        for(auto ins : iterator_for(*mod))
203
204
205
        {
            if(ins->name() != "@param")
                continue;
206

Shucai Xiao's avatar
Shucai Xiao committed
207
208
209
210
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

211
212
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
213
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
214
            mod->replace_instruction(ins, c);
215
        }
216
217

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
218
        auto ret = std::prev(mod->end());
219
220
        if(ret->name() == "@return")
        {
221
            const auto& inputs = ret->inputs();
222
223
224

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
225
            for(const auto& in : inputs)
226
            {
227
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
228
229
230
231
232
233
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
234
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
235
        }
236
237
    }

Paul's avatar
Paul committed
238
239
    void apply()
    {
240
        init();
Shucai Xiao's avatar
Shucai Xiao committed
241
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
242
        {
Paul's avatar
Paul committed
243
            auto s = it->get_shape();
244
            if(apply_map.count(it->name()) > 0)
245
            {
246
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
247
            }
Paul's avatar
Paul committed
248
        }
249

250
        copy_params();
Paul's avatar
Paul committed
251
252
    }

Paul's avatar
Paul committed
253
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
254
    {
255
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
256
        if(offload_copy)
Paul's avatar
Paul committed
257
        {
258
259
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
260
261
            return result;
        }
262
263
264
265

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
266
            return mod->add_parameter(prog_output_names[ins_alias], s);
267
268
269
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
270
            return mod->add_parameter("output", s);
271
272
        }

273
274
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
275
276
    }

Shucai Xiao's avatar
Shucai Xiao committed
277
    void add_convolution_op()
Paul's avatar
Paul committed
278
    {
279
280
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
281

282
            auto conv = miopen_convolution{op, make_conv(op)};
283
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
284

285
286
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
287

Shucai Xiao's avatar
Shucai Xiao committed
288
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
303

Shucai Xiao's avatar
Shucai Xiao committed
304
            return mod->replace_instruction(
305
306
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
307
308
    }

309
310
    template <typename Op>
    void add_gemm_op(const std::string& name)
311
312
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
313
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
314
            if(refs.size() == 2)
315
316
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
317
318
319
320
321
322
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
323
                {
324
325
326
327
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
328
329
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
330
331
332
333
                else
                {
                    refs.push_back(refs.back());
                }
334
            }
Shucai Xiao's avatar
Shucai Xiao committed
335
            return mod->replace_instruction(
336
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format}, refs);
337
338
339
        });
    }

340
341
342
343
344
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
345
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
346

Shucai Xiao's avatar
Shucai Xiao committed
347
            auto args      = ins->inputs();
348
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
349
350
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
351
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
352
353
354
        });
    }

355
356
357
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
358
    {
359
        apply_map.emplace(op_name, [=](instruction_ref ins) {
360
361
362
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
363

Shucai Xiao's avatar
Shucai Xiao committed
364
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
365
        });
Paul's avatar
Paul committed
366
    }
Paul's avatar
Paul committed
367

368
369
370
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
371
    {
372
373
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
374
375
376
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
377

Shucai Xiao's avatar
Shucai Xiao committed
378
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
379
        });
Khalique's avatar
Khalique committed
380
381
    }

Shucai Xiao's avatar
Shucai Xiao committed
382
    void add_batch_norm_inference_op()
383
    {
384
385
386
387
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
402
403
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
404
405
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
406
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
407

Shucai Xiao's avatar
Shucai Xiao committed
408
409
410
411
412
413
414
415
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
416

417
        });
418
    }
Shucai Xiao's avatar
Shucai Xiao committed
419
420
421
422
423
424
425

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
426
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
427
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
428
            return mod->replace_instruction(
429
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
430
431
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
432

Shucai Xiao's avatar
Shucai Xiao committed
433
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
434
435
436
437
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
438
439
440
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
463
464
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
465
466
467
468
469
470
471
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
472

Shucai Xiao's avatar
Shucai Xiao committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
Paul's avatar
Paul committed
530
531
};

Shucai Xiao's avatar
Shucai Xiao committed
532
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
533

Paul's avatar
Paul committed
534
} // namespace gpu
Paul's avatar
Paul committed
535
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
536
} // namespace migraphx