lowering.cpp 19.7 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
60
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
61
62
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
63

64
    context& get_context() const
65
66
67
68
69
70
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
71
72
73
74
75
76
77
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

78
79
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
80
        this->last = instruction::get_output_alias(std::prev(mod->end()));
81
82
        if(this->last->name() == "@return")
        {
83
            const auto& prog_outputs = last->inputs();
84
85
86
87
88
89
90
91
92
93
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
94
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
95
96
97
98
            }
        }
    }

99
100
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
101
        assert(mod != nullptr);
102
        assert(pass != nullptr);
103

Shucai Xiao's avatar
Shucai Xiao committed
104
105
106
107
108
109
110
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
111
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
112
        create_output_names();
Paul's avatar
Paul committed
113

114
115
116
117
118
119
120
121
122
123
124
125
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
126
        add_generic_op("equal");
127
128
129
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
130
131
        add_generic_op("greater");
        add_generic_op("less");
132
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
133
134
135
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
136
137
138
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
139
        add_generic_op("not");
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
155
        add_generic_op("where");
156

Shucai Xiao's avatar
Shucai Xiao committed
157
        add_extend_op("abs");
158
159
160
161
162
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
163
        add_extend_op("elu");
164
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
165
        add_extend_op("leaky_relu");
166
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
167
        add_extend_op("lrn");
turneram's avatar
turneram committed
168
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
169
        add_extend_op("nonzero");
170
        add_extend_op("pad");
171
        add_extend_op("pooling");
172
        add_extend_op("prefix_scan_sum");
173
174
175
176
177
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
178
        add_extend_op("reverse");
179
180
181
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
182
        add_extend_op("scatter");
183
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
184
        add_extend_op("topk");
185

Shucai Xiao's avatar
Shucai Xiao committed
186
        add_batch_norm_inference_op();
187
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
188
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
189
190
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
191
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
192
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
193
        add_neg_op();
194
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
195
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
196
        add_roialign();
197
198
    }

199
200
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
201
        if(not offload_copy)
202
            return;
203

Shucai Xiao's avatar
Shucai Xiao committed
204
        for(auto ins : iterator_for(*mod))
205
206
207
        {
            if(ins->name() != "@param")
                continue;
208

Shucai Xiao's avatar
Shucai Xiao committed
209
210
211
212
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

213
214
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
215
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
216
            mod->replace_instruction(ins, c);
217
        }
218
219

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
220
        auto ret = std::prev(mod->end());
221
222
        if(ret->name() == "@return")
        {
223
            const auto& inputs = ret->inputs();
224
225
226

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
227
            for(const auto& in : inputs)
228
            {
229
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
230
231
232
233
234
235
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
236
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
237
        }
238
239
    }

Paul's avatar
Paul committed
240
241
    void apply()
    {
242
        init();
Shucai Xiao's avatar
Shucai Xiao committed
243
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
244
        {
Paul's avatar
Paul committed
245
            auto s = it->get_shape();
246
            if(apply_map.count(it->name()) > 0)
247
            {
248
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
249
            }
Paul's avatar
Paul committed
250
        }
251

252
        copy_params();
Paul's avatar
Paul committed
253
254
    }

Paul's avatar
Paul committed
255
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
256
    {
257
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
258
        if(offload_copy)
Paul's avatar
Paul committed
259
        {
260
261
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
262
263
            return result;
        }
264
265
266
267

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
268
            return mod->add_parameter(prog_output_names[ins_alias], s);
269
270
271
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
272
            return mod->add_parameter("output", s);
273
274
        }

275
276
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
277
278
    }

Shucai Xiao's avatar
Shucai Xiao committed
279
    void add_convolution_op()
Paul's avatar
Paul committed
280
    {
281
282
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
283

284
            auto conv = miopen_convolution{op, make_conv(op)};
285
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
286

287
288
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
289

Shucai Xiao's avatar
Shucai Xiao committed
290
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
305

Shucai Xiao's avatar
Shucai Xiao committed
306
            return mod->replace_instruction(
307
308
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
309
310
    }

311
312
    template <typename Op>
    void add_gemm_op(const std::string& name)
313
314
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
315
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
316
            if(refs.size() == 2)
317
318
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
319
320
321
322
323
324
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
325
                {
326
327
328
329
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
330
331
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
332
333
334
335
                else
                {
                    refs.push_back(refs.back());
                }
336
            }
Shucai Xiao's avatar
Shucai Xiao committed
337
            return mod->replace_instruction(
338
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format}, refs);
339
340
341
        });
    }

342
343
344
345
346
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
347
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
348

Shucai Xiao's avatar
Shucai Xiao committed
349
            auto args      = ins->inputs();
350
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
351
352
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
353
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
354
355
356
        });
    }

357
358
359
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
360
    {
361
        apply_map.emplace(op_name, [=](instruction_ref ins) {
362
363
364
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
365

Shucai Xiao's avatar
Shucai Xiao committed
366
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
367
        });
Paul's avatar
Paul committed
368
    }
Paul's avatar
Paul committed
369

370
371
372
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
373
    {
374
375
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
376
377
378
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
379

Shucai Xiao's avatar
Shucai Xiao committed
380
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
381
        });
Khalique's avatar
Khalique committed
382
383
    }

Shucai Xiao's avatar
Shucai Xiao committed
384
    void add_batch_norm_inference_op()
385
    {
386
387
388
389
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
404
405
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
406
407
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
408
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
409

Shucai Xiao's avatar
Shucai Xiao committed
410
411
412
413
414
415
416
417
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
418

419
        });
420
    }
Shucai Xiao's avatar
Shucai Xiao committed
421
422
423
424
425
426
427

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
428
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
429
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
430
            return mod->replace_instruction(
431
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
432
433
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
434

Shucai Xiao's avatar
Shucai Xiao committed
435
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
436
437
438
439
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
440
441
442
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
465
466
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
467
468
469
470
471
472
473
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
474

Shucai Xiao's avatar
Shucai Xiao committed
475
476
477
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
478

Shucai Xiao's avatar
Shucai Xiao committed
479
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
480
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
481
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
482
483
484
485
486
487
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
488
489
490
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
548
549
};

Shucai Xiao's avatar
Shucai Xiao committed
550
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
551

Paul's avatar
Paul committed
552
} // namespace gpu
Paul's avatar
Paul committed
553
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
554
} // namespace migraphx