lowering.cpp 20.4 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/get_tuple_elem.hpp>
31
#include <migraphx/gpu/greater.hpp>
32
#include <migraphx/gpu/int8_conv_pack.hpp>
33
#include <migraphx/gpu/leaky_relu.hpp>
34
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
35
36
37
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
38
39
40
41
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
42
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
43
#include <migraphx/gpu/where.hpp>
44
#include <migraphx/iterator_for.hpp>
45
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
46
#include <utility>
47
#include <functional>
Khalique's avatar
Khalique committed
48
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
49
#include <map>
Paul's avatar
Paul committed
50

Paul's avatar
Paul committed
51
namespace migraphx {
Paul's avatar
Paul committed
52
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
53
namespace gpu {
Paul's avatar
Paul committed
54
55
56

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
57
    module* mod          = nullptr;
58
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
59
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
60
    instruction_ref last{};
61
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
62
63
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
64

65
    context& get_context() const
66
67
68
69
70
71
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
72
73
74
75
76
77
78
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

79
80
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
81
        this->last = instruction::get_output_alias(std::prev(mod->end()));
82
83
        if(this->last->name() == "@return")
        {
84
            const auto& prog_outputs = last->inputs();
85
86
87
88
89
90
91
92
93
94
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
95
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
96
97
98
99
            }
        }
    }

100
101
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
102
        assert(mod != nullptr);
103
        assert(pass != nullptr);
104

Shucai Xiao's avatar
Shucai Xiao committed
105
106
107
108
109
110
111
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
112
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
113
        create_output_names();
Paul's avatar
Paul committed
114

115
116
117
118
119
120
121
122
123
124
125
126
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
127
        add_generic_op("equal");
128
129
130
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
131
132
        add_generic_op("greater");
        add_generic_op("less");
133
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
134
135
136
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
137
138
139
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
140
        add_generic_op("not");
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
156
        add_generic_op("where");
157

Shucai Xiao's avatar
Shucai Xiao committed
158
        add_extend_op("abs");
159
160
161
162
163
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
164
        add_extend_op("elu");
165
        add_extend_op("gather");
166
        add_extend_op("get_tuple_elem");
Shucai Xiao's avatar
Shucai Xiao committed
167
        add_extend_op("leaky_relu");
168
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
169
        add_extend_op("lrn");
turneram's avatar
turneram committed
170
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
171
        add_extend_op("nonzero");
172
        add_extend_op("pad");
173
        add_extend_op("pooling");
174
        add_extend_op("prefix_scan_sum");
175
176
177
178
179
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
180
        add_extend_op("reverse");
181
182
183
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
184
        add_extend_op("scatter");
185
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
186
        add_extend_op("topk");
187

188
189
        add_precompile_op("pointwise");

Shucai Xiao's avatar
Shucai Xiao committed
190
        add_batch_norm_inference_op();
191
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
192
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
193
194
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
195
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
196
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
197
        add_neg_op();
198
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
199
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
200
        add_roialign();
201
202
    }

203
204
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
205
        if(not offload_copy)
206
            return;
207

Shucai Xiao's avatar
Shucai Xiao committed
208
        for(auto ins : iterator_for(*mod))
209
210
211
        {
            if(ins->name() != "@param")
                continue;
212

Shucai Xiao's avatar
Shucai Xiao committed
213
214
215
216
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

217
218
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
219
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
220
            mod->replace_instruction(ins, c);
221
        }
222
223

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
224
        auto ret = std::prev(mod->end());
225
226
        if(ret->name() == "@return")
        {
227
            const auto& inputs = ret->inputs();
228
229
230

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
231
            for(const auto& in : inputs)
232
            {
233
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
234
235
236
237
238
239
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
240
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
241
        }
242
243
    }

Paul's avatar
Paul committed
244
245
    void apply()
    {
246
        init();
Shucai Xiao's avatar
Shucai Xiao committed
247
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
248
        {
Paul's avatar
Paul committed
249
            auto s = it->get_shape();
250
            if(apply_map.count(it->name()) > 0)
251
            {
252
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
253
            }
Paul's avatar
Paul committed
254
        }
255

256
        copy_params();
Paul's avatar
Paul committed
257
258
    }

Paul's avatar
Paul committed
259
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
260
    {
261
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
262
        if(offload_copy)
Paul's avatar
Paul committed
263
        {
264
265
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
266
267
            return result;
        }
268
269
270
271

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
272
            return mod->add_parameter(prog_output_names[ins_alias], s);
273
274
275
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
276
            return mod->add_parameter("output", s);
277
278
        }

279
280
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
281
282
    }

Shucai Xiao's avatar
Shucai Xiao committed
283
    void add_convolution_op()
Paul's avatar
Paul committed
284
    {
285
286
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
287

288
            auto conv = miopen_convolution{op, make_conv(op)};
289
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
290

291
292
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
293

Shucai Xiao's avatar
Shucai Xiao committed
294
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
309

Shucai Xiao's avatar
Shucai Xiao committed
310
            return mod->replace_instruction(
311
312
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
313
314
    }

315
316
    template <typename Op>
    void add_gemm_op(const std::string& name)
317
318
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
319
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
320
            if(refs.size() == 2)
321
322
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
323
324
325
326
327
328
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
329
                {
330
331
332
333
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
334
335
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
336
337
338
339
                else
                {
                    refs.push_back(refs.back());
                }
340
            }
Shucai Xiao's avatar
Shucai Xiao committed
341
            return mod->replace_instruction(
342
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format}, refs);
343
344
345
        });
    }

346
347
348
349
350
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
351
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
352

Shucai Xiao's avatar
Shucai Xiao committed
353
            auto args      = ins->inputs();
354
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
355
356
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
357
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
358
359
360
        });
    }

361
362
363
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
364
    {
365
        apply_map.emplace(op_name, [=](instruction_ref ins) {
366
367
368
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
369

Shucai Xiao's avatar
Shucai Xiao committed
370
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
371
        });
Paul's avatar
Paul committed
372
    }
Paul's avatar
Paul committed
373

374
375
376
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
377
    {
378
379
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
380
381
382
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
383

Shucai Xiao's avatar
Shucai Xiao committed
384
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
385
        });
Khalique's avatar
Khalique committed
386
387
    }

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    void add_precompile_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);

            return mod->replace_instruction(
                ins,
                make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
                refs,
                ins->module_inputs());
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
403
    void add_batch_norm_inference_op()
404
    {
405
406
407
408
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
423
424
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
425
426
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
427
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
428

Shucai Xiao's avatar
Shucai Xiao committed
429
430
431
432
433
434
435
436
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
437

438
        });
439
    }
Shucai Xiao's avatar
Shucai Xiao committed
440
441
442
443
444
445
446

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
447
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
448
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
449
            return mod->replace_instruction(
450
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
451
452
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
453

Shucai Xiao's avatar
Shucai Xiao committed
454
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
455
456
457
458
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
459
460
461
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
484
485
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
486
487
488
489
490
491
492
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
493

Shucai Xiao's avatar
Shucai Xiao committed
494
495
496
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
497

Shucai Xiao's avatar
Shucai Xiao committed
498
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
499
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
500
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
501
502
503
504
505
506
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
507
508
509
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
567
568
};

Shucai Xiao's avatar
Shucai Xiao committed
569
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
570

Paul's avatar
Paul committed
571
} // namespace gpu
Paul's avatar
Paul committed
572
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
573
} // namespace migraphx