onnx.cpp 30.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
Paul's avatar
Paul committed
20
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
46
    program prog    = program();
47
    bool is_pytorch = false;
Paul's avatar
Paul committed
48
49
50
51
52

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
55
56
57
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Tanh", op::tanh{});
        add_generic_op("Abs", op::abs{});
Khalique's avatar
Khalique committed
58
59
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
60
        add_generic_op("Identity", op::identity{});
Paul's avatar
Paul committed
61

Khalique's avatar
Khalique committed
62
63
64
65
66
67
68
69
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

        add_mem_op("Sum", &onnx_parser::parse_sum);
        add_mem_op("Max", &onnx_parser::parse_max);
        add_mem_op("Min", &onnx_parser::parse_min);
Paul's avatar
Paul committed
70

Khalique's avatar
Khalique committed
71
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
72
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
73
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
74
75
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
76
77
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
78
79
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
80
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
81
82
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
83
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
84
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
85
86
87
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
88
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
89
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
105

106
    template <class T>
Khalique's avatar
Khalique committed
107
    void add_binary_op(std::string name, T x)
108
109
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
110
            if(args.size() != 2)
Paul's avatar
Paul committed
111
                MIGRAPHX_THROW("binary operators should have 2 operands");
112
113
114
115
116
117
118
119
120
121
122
123
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
124
                return prog.add_instruction(x, args);
125
            }
Khalique's avatar
Khalique committed
126
            else
127
            {
Khalique's avatar
Khalique committed
128
129
130
131
132
133
134
135
136
137
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
138
139
140
141
142
143
144
145
146
147
148
149
150
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
151
152
153
154
155
156
157
158
159
160
161
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(s1->size());
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
162
163
164
165
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
166
167
168
169
170
171
172
173
174

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
175
176
    }

Paul's avatar
Paul committed
177
    template <class T>
Paul's avatar
Paul committed
178
179
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
180
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
181
182
183
184
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
185
186
187
    instruction_ref
    parse_sum(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
188
        return std::accumulate(std::next(args.begin()), args.end(), args.front(), [this](instruction_ref a, instruction_ref b){return add_broadcastable_binary_op(a, b, op::add{});});
Khalique's avatar
Khalique committed
189
190
191
192
193
    }

    instruction_ref
    parse_max(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
194
        return std::accumulate(std::next(args.begin()), args.end(), args.front(), [this](instruction_ref a, instruction_ref b){return add_broadcastable_binary_op(a, b, op::max{});});
Khalique's avatar
Khalique committed
195
196
197
198
199
    }

    instruction_ref
    parse_min(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
200
        return std::accumulate(std::next(args.begin()), args.end(), args.front(), [this](instruction_ref a, instruction_ref b){return add_broadcastable_binary_op(a, b, op::min{});});
Khalique's avatar
Khalique committed
201
202
    }

Paul's avatar
Paul committed
203
    instruction_ref
Paul's avatar
Paul committed
204
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
205
206
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
207
208
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
209
210
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
211
212
    }

Paul's avatar
Paul committed
213
    instruction_ref
Paul's avatar
Paul committed
214
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
215
    {
216
        op::convolution op;
Paul's avatar
Paul committed
217
218
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
219
            if(contains(attributes, "auto_pad"))
220
            {
Paul's avatar
Paul committed
221
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
222
223
224
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
225
            if(padding.size() != 4)
226
            {
Paul's avatar
Paul committed
227
                MIGRAPHX_THROW("padding should have 4 values");
228
            }
Scott Thornton's avatar
Scott Thornton committed
229
            if(padding[0] != padding[2] || padding[1] != padding[3])
230
            {
Paul's avatar
Paul committed
231
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
232
233
234
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
235
        }
Paul's avatar
Paul committed
236
237
238
239
240
241
242
243
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
244
        if(contains(attributes, "auto_pad"))
245
246
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
247
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
248
            {
Paul's avatar
Paul committed
249
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
250
251
            }

wsttiger's avatar
fixes  
wsttiger committed
252
            if(s.find("SAME") != std::string::npos)
253
254
255
256
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
257
258
259
260
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
261
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
262
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
263
        }
Paul's avatar
Paul committed
264
265
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
266

Paul's avatar
Paul committed
267
268
269
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
270
    {
Khalique's avatar
Khalique committed
271
272
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
273
        {
Khalique's avatar
Khalique committed
274
275
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
276
        }
Paul's avatar
Paul committed
277
278
        if(contains(attributes, "pads"))
        {
279
280
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
281
            if(padding.size() != 4)
282
            {
Paul's avatar
Paul committed
283
                MIGRAPHX_THROW("padding should have 4 values");
284
            }
Scott Thornton's avatar
Scott Thornton committed
285
            if(padding[0] != padding[2] || padding[1] != padding[3])
286
            {
Paul's avatar
Paul committed
287
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
288
289
290
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
291
292
293
294
295
296
297
298
299
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
300
        if(contains(attributes, "auto_pad"))
301
302
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
303
            if(to_upper(s) != "NOTSET")
304
            {
Paul's avatar
Paul committed
305
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
306
307
308
            }
        }

Paul's avatar
Paul committed
309
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
310
311
    }

Paul's avatar
Paul committed
312
    instruction_ref
Paul's avatar
Paul committed
313
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
314
    {
315
        op::reshape op;
Paul's avatar
Paul committed
316
317
318
319
320
321
322
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
323
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
324
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
325
        }
Paul's avatar
Paul committed
326
327
328
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
329
    instruction_ref
Paul's avatar
Paul committed
330
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
331
332
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
333
334
335
336
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
337
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
338
339
    }

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
358
359
360
361
362
363
364
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
386
387
388
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
389
390
391
392
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
393

Paul's avatar
Paul committed
394
    instruction_ref
Paul's avatar
Paul committed
395
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
418
419
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
420
421
422
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
423
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
424
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
425
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
426
        }
Shucai Xiao's avatar
Shucai Xiao committed
427
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
428
429
    }

430
    instruction_ref
Paul's avatar
Paul committed
431
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
432
    {
Scott Thornton's avatar
Scott Thornton committed
433
434
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
435
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
436
        bool is_test                                      = false;
437
438
439
440
441
442
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
443
            momentum = parse_value(attributes.at("momentum")).at<float>();
444
445
446
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
447
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
448
449
450
        }
        if(contains(attributes, "spatial"))
        {
451
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
452
453
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
454
        }
Paul's avatar
Paul committed
455
        (void)is_test;
Paul's avatar
Paul committed
456
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
457
        return prog.add_instruction(op, std::move(args));
458
459
    }

460
461
462
463
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
464
        float alpha = 0.01; // default alpha val for leaky relu
465
466
467
468
469
470
471
472
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
473
474
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
475
476
477
478
479
480
481
482
483
484
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
502

Khalique's avatar
Khalique committed
503
504
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
505
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
506

Paul's avatar
Paul committed
507
508
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
509
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
510
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
511
    }
Khalique's avatar
Khalique committed
512

Khalique's avatar
Khalique committed
513
514
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
515
516
517
518
519
520
521
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
522
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
523
524
    }

Paul's avatar
Paul committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
544
545
546
547
548
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
549
550
551
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
552
553
554
555
556
557
558
559
560
561
562
563
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
564
565
566
        }
        for(auto&& p : nodes)
        {
567
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
568
569
570
        }
    }

Paul's avatar
Paul committed
571
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
572
    {
Paul's avatar
Paul committed
573
        if(name.empty())
Paul's avatar
Paul committed
574
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
575
576
577
578
579
580
581
582
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
583
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
584
                    assert(name != iname);
Paul's avatar
Paul committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

614
615
616
617
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
618
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
619
620
621
622
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
623
624
625
626
        }
        return node.name();
    }

Paul's avatar
Paul committed
627
628
629
630
631
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
632
            result[get_name(node)] = node;
Paul's avatar
Paul committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
658
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
659
660
661
662
663
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
664
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
665
666
667
668
669
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
670
671
672
673
674
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
        if(dims.size() == 0)
        {
            dims = {1};
        }
675
676
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
677
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
678
679
680
681
682
683
684
685
686
687
688
689
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
690
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
691
692
693
694
695
696
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
697
            MIGRAPHX_THROW("Invalid tensor type");
698
        }
Paul's avatar
Paul committed
699
700
701
702
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
703
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
704
705
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
706
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
707
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
708
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
709
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
710
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
711
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
712
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
713
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
714
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
715
716
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
717
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
718
719
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
720
721
722
723
724
725
726
727
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
728
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
750
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
751
752
753
754
755
756
757
758
759
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
760
        auto&& tensor_dims = t.tensor_type().shape().dim();
761
762
763
764
765
766
767
768
769
770
771
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
797
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
798
} // namespace migraphx