onnx.cpp 30.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
Paul's avatar
Paul committed
20
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
46
    program prog    = program();
47
    bool is_pytorch = false;
Paul's avatar
Paul committed
48
49
50
51
52

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
55
56
57
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Tanh", op::tanh{});
        add_generic_op("Abs", op::abs{});
Khalique's avatar
Khalique committed
58
59
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
60
        add_generic_op("Identity", op::identity{});
Paul's avatar
Paul committed
61

Khalique's avatar
Khalique committed
62
63
64
65
66
67
68
69
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

        add_mem_op("Sum", &onnx_parser::parse_sum);
        add_mem_op("Max", &onnx_parser::parse_max);
        add_mem_op("Min", &onnx_parser::parse_min);
Paul's avatar
Paul committed
70

Khalique's avatar
Khalique committed
71
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
72
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
73
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
74
75
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
76
77
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
78
79
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
80
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
81
82
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
83
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
84
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
85
86
87
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
88
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
89
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
105

106
    template <class T>
Khalique's avatar
Khalique committed
107
    void add_binary_op(std::string name, T x)
108
109
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
110
            if(args.size() != 2)
Paul's avatar
Paul committed
111
                MIGRAPHX_THROW("binary operators should have 2 operands");
112
113
114
115
116
117
118
119
120
121
122
123
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
124
                return prog.add_instruction(x, args);
125
            }
Khalique's avatar
Khalique committed
126
            else
127
            {
Khalique's avatar
Khalique committed
128
129
130
131
132
133
134
135
136
137
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
138
139
140
141
142
143
144
145
146
147
148
149
150
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
151
152
153
154
155
156
157
158
159
160
161
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(s1->size());
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
162
163
164
165
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
166
167
168
169
170
171
172
173
174

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
175
176
    }

Paul's avatar
Paul committed
177
    template <class T>
Paul's avatar
Paul committed
178
179
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
180
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
181
182
183
184
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
185
186
187
188
    instruction_ref
    parse_sum(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto curr_sum = args.front();
Khalique's avatar
Khalique committed
189
        if(args.size() > 1)
Khalique's avatar
Khalique committed
190
        {
Khalique's avatar
Khalique committed
191
            for(auto it = std::next(args.begin()); it != args.end(); ++it)
Khalique's avatar
Khalique committed
192
193
194
195
196
197
198
199
200
201
202
            {
                curr_sum = add_broadcastable_binary_op(curr_sum, *it, op::add{});
            }
        }
        return curr_sum;
    }

    instruction_ref
    parse_max(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto curr_max = args.front();
Khalique's avatar
Khalique committed
203
        if(args.size() > 1)
Khalique's avatar
Khalique committed
204
        {
Khalique's avatar
Khalique committed
205
            for(auto it = std::next(args.begin()); it != args.end(); ++it)
Khalique's avatar
Khalique committed
206
207
208
209
210
211
212
213
214
215
216
            {
                curr_max = add_broadcastable_binary_op(curr_max, *it, op::max{});
            }
        }
        return curr_max;
    }

    instruction_ref
    parse_min(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto curr_min = args.front();
Khalique's avatar
Khalique committed
217
        if(args.size() > 1)
Khalique's avatar
Khalique committed
218
        {
Khalique's avatar
Khalique committed
219
            for(auto it = std::next(args.begin()); it != args.end(); ++it)
Khalique's avatar
Khalique committed
220
221
222
223
224
225
226
            {
                curr_min = add_broadcastable_binary_op(curr_min, *it, op::min{});
            }
        }
        return curr_min;
    }

Paul's avatar
Paul committed
227
    instruction_ref
Paul's avatar
Paul committed
228
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
229
230
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
231
232
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
233
234
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
235
236
    }

Paul's avatar
Paul committed
237
    instruction_ref
Paul's avatar
Paul committed
238
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
239
    {
240
        op::convolution op;
Paul's avatar
Paul committed
241
242
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
243
            if(contains(attributes, "auto_pad"))
244
            {
Paul's avatar
Paul committed
245
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
246
247
248
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
249
            if(padding.size() != 4)
250
            {
Paul's avatar
Paul committed
251
                MIGRAPHX_THROW("padding should have 4 values");
252
            }
Scott Thornton's avatar
Scott Thornton committed
253
            if(padding[0] != padding[2] || padding[1] != padding[3])
254
            {
Paul's avatar
Paul committed
255
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
256
257
258
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
259
        }
Paul's avatar
Paul committed
260
261
262
263
264
265
266
267
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
268
        if(contains(attributes, "auto_pad"))
269
270
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
271
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
272
            {
Paul's avatar
Paul committed
273
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
274
275
            }

wsttiger's avatar
fixes  
wsttiger committed
276
            if(s.find("SAME") != std::string::npos)
277
278
279
280
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
281
282
283
284
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
285
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
286
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
287
        }
Paul's avatar
Paul committed
288
289
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
290

Paul's avatar
Paul committed
291
292
293
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
294
    {
Khalique's avatar
Khalique committed
295
296
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
297
        {
Khalique's avatar
Khalique committed
298
299
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
300
        }
Paul's avatar
Paul committed
301
302
        if(contains(attributes, "pads"))
        {
303
304
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
305
            if(padding.size() != 4)
306
            {
Paul's avatar
Paul committed
307
                MIGRAPHX_THROW("padding should have 4 values");
308
            }
Scott Thornton's avatar
Scott Thornton committed
309
            if(padding[0] != padding[2] || padding[1] != padding[3])
310
            {
Paul's avatar
Paul committed
311
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
312
313
314
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
315
316
317
318
319
320
321
322
323
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
324
        if(contains(attributes, "auto_pad"))
325
326
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
327
            if(to_upper(s) != "NOTSET")
328
            {
Paul's avatar
Paul committed
329
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
330
331
332
            }
        }

Paul's avatar
Paul committed
333
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
334
335
    }

Paul's avatar
Paul committed
336
    instruction_ref
Paul's avatar
Paul committed
337
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
338
    {
339
        op::reshape op;
Paul's avatar
Paul committed
340
341
342
343
344
345
346
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
347
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
348
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
349
        }
Paul's avatar
Paul committed
350
351
352
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
353
    instruction_ref
Paul's avatar
Paul committed
354
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
355
356
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
357
358
359
360
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
361
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
362
363
    }

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
382
383
384
385
386
387
388
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
410
411
412
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
413
414
415
416
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
417

Paul's avatar
Paul committed
418
    instruction_ref
Paul's avatar
Paul committed
419
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
442
443
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
444
445
446
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
447
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
448
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
449
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
450
        }
Shucai Xiao's avatar
Shucai Xiao committed
451
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
452
453
    }

454
    instruction_ref
Paul's avatar
Paul committed
455
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
456
    {
Scott Thornton's avatar
Scott Thornton committed
457
458
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
459
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
460
        bool is_test                                      = false;
461
462
463
464
465
466
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
467
            momentum = parse_value(attributes.at("momentum")).at<float>();
468
469
470
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
471
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
472
473
474
        }
        if(contains(attributes, "spatial"))
        {
475
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
476
477
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
478
        }
Paul's avatar
Paul committed
479
        (void)is_test;
Paul's avatar
Paul committed
480
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
481
        return prog.add_instruction(op, std::move(args));
482
483
    }

484
485
486
487
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
488
        float alpha = 0.01; // default alpha val for leaky relu
489
490
491
492
493
494
495
496
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
497
498
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
499
500
501
502
503
504
505
506
507
508
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
526

Khalique's avatar
Khalique committed
527
528
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
529
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
530

Paul's avatar
Paul committed
531
532
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
533
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
534
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
535
    }
Khalique's avatar
Khalique committed
536

Khalique's avatar
Khalique committed
537
538
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
539
540
541
542
543
544
545
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
546
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
547
548
    }

Paul's avatar
Paul committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
568
569
570
571
572
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
573
574
575
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
576
577
578
579
580
581
582
583
584
585
586
587
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
588
589
590
        }
        for(auto&& p : nodes)
        {
591
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
592
593
594
        }
    }

Paul's avatar
Paul committed
595
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
596
    {
Paul's avatar
Paul committed
597
        if(name.empty())
Paul's avatar
Paul committed
598
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
599
600
601
602
603
604
605
606
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
607
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
608
                    assert(name != iname);
Paul's avatar
Paul committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

638
639
640
641
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
642
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
643
644
645
646
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
647
648
649
650
        }
        return node.name();
    }

Paul's avatar
Paul committed
651
652
653
654
655
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
656
            result[get_name(node)] = node;
Paul's avatar
Paul committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
682
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
683
684
685
686
687
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
688
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
689
690
691
692
693
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
694
695
696
697
698
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
        if(dims.size() == 0)
        {
            dims = {1};
        }
699
700
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
701
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
702
703
704
705
706
707
708
709
710
711
712
713
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
714
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
715
716
717
718
719
720
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
721
            MIGRAPHX_THROW("Invalid tensor type");
722
        }
Paul's avatar
Paul committed
723
724
725
726
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
727
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
728
729
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
730
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
731
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
732
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
733
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
734
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
735
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
736
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
737
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
738
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
739
740
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
741
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
742
743
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
744
745
746
747
748
749
750
751
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
752
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
774
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
775
776
777
778
779
780
781
782
783
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
784
        auto&& tensor_dims = t.tensor_type().shape().dim();
785
786
787
788
789
790
791
792
793
794
795
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
821
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
822
} // namespace migraphx