lowering.cpp 18.8 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
60
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
61
62
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
63

64
    context& get_context() const
65
66
67
68
69
70
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
71
72
73
74
75
76
77
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

78
79
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
80
        this->last = instruction::get_output_alias(std::prev(mod->end()));
81
82
        if(this->last->name() == "@return")
        {
83
            const auto& prog_outputs = last->inputs();
84
85
86
87
88
89
90
91
92
93
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
94
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
95
96
97
98
            }
        }
    }

99
100
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
101
        assert(mod != nullptr);
102
        assert(pass != nullptr);
103

Shucai Xiao's avatar
Shucai Xiao committed
104
105
106
107
108
109
110
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
111
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
112
        create_output_names();
Paul's avatar
Paul committed
113

114
115
116
117
118
119
120
121
122
123
124
125
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
126
        add_generic_op("equal");
127
128
129
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
130
131
        add_generic_op("greater");
        add_generic_op("less");
132
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
133
134
135
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
136
137
138
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
139
        add_generic_op("not");
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
155
        add_generic_op("where");
156

Shucai Xiao's avatar
Shucai Xiao committed
157
        add_extend_op("abs");
158
159
160
161
162
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
163
        add_extend_op("elu");
164
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
165
        add_extend_op("leaky_relu");
166
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
167
        add_extend_op("lrn");
turneram's avatar
turneram committed
168
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
169
        add_extend_op("nonzero");
170
        add_extend_op("pad");
171
        add_extend_op("pooling");
172
        add_extend_op("prefix_scan_sum");
173
174
175
176
177
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
178
        add_extend_op("reverse");
179
180
181
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
182
        add_extend_op("scatter");
183
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
184
        add_extend_op("topk");
185

Shucai Xiao's avatar
Shucai Xiao committed
186
        add_batch_norm_inference_op();
187
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
188
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
189
190
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
191
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
192
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
193
194
        add_neg_op();
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
195
        add_roialign();
196
197
    }

198
199
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
200
        if(not offload_copy)
201
            return;
202

Shucai Xiao's avatar
Shucai Xiao committed
203
        for(auto ins : iterator_for(*mod))
204
205
206
        {
            if(ins->name() != "@param")
                continue;
207

Shucai Xiao's avatar
Shucai Xiao committed
208
209
210
211
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

212
213
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
214
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
215
            mod->replace_instruction(ins, c);
216
        }
217
218

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
219
        auto ret = std::prev(mod->end());
220
221
        if(ret->name() == "@return")
        {
222
            const auto& inputs = ret->inputs();
223
224
225

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
226
            for(const auto& in : inputs)
227
            {
228
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
229
230
231
232
233
234
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
235
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
236
        }
237
238
    }

Paul's avatar
Paul committed
239
240
    void apply()
    {
241
        init();
Shucai Xiao's avatar
Shucai Xiao committed
242
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
243
        {
Paul's avatar
Paul committed
244
            auto s = it->get_shape();
245
            if(apply_map.count(it->name()) > 0)
246
            {
247
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
248
            }
Paul's avatar
Paul committed
249
        }
250

251
        copy_params();
Paul's avatar
Paul committed
252
253
    }

Paul's avatar
Paul committed
254
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
255
    {
256
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
257
        if(offload_copy)
Paul's avatar
Paul committed
258
        {
259
260
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
261
262
            return result;
        }
263
264
265
266

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
267
            return mod->add_parameter(prog_output_names[ins_alias], s);
268
269
270
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
271
            return mod->add_parameter("output", s);
272
273
        }

274
275
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
276
277
    }

Shucai Xiao's avatar
Shucai Xiao committed
278
    void add_convolution_op()
Paul's avatar
Paul committed
279
    {
280
281
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
282

283
            auto conv = miopen_convolution{op, make_conv(op)};
284
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
285

286
287
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
288

Shucai Xiao's avatar
Shucai Xiao committed
289
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
304

Shucai Xiao's avatar
Shucai Xiao committed
305
            return mod->replace_instruction(
306
307
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
308
309
    }

310
311
    template <typename Op>
    void add_gemm_op(const std::string& name)
312
313
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
314
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
315
            if(refs.size() == 2)
316
317
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
318
319
320
321
322
323
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
324
                {
325
326
327
328
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
329
330
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
331
332
333
334
                else
                {
                    refs.push_back(refs.back());
                }
335
            }
Shucai Xiao's avatar
Shucai Xiao committed
336
            return mod->replace_instruction(
337
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format}, refs);
338
339
340
        });
    }

341
342
343
344
345
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
346
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
347

Shucai Xiao's avatar
Shucai Xiao committed
348
            auto args      = ins->inputs();
349
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
350
351
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
352
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
353
354
355
        });
    }

356
357
358
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
359
    {
360
        apply_map.emplace(op_name, [=](instruction_ref ins) {
361
362
363
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
364

Shucai Xiao's avatar
Shucai Xiao committed
365
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
366
        });
Paul's avatar
Paul committed
367
    }
Paul's avatar
Paul committed
368

369
370
371
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
372
    {
373
374
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
375
376
377
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
378

Shucai Xiao's avatar
Shucai Xiao committed
379
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
380
        });
Khalique's avatar
Khalique committed
381
382
    }

Shucai Xiao's avatar
Shucai Xiao committed
383
    void add_batch_norm_inference_op()
384
    {
385
386
387
388
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
403
404
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
405
406
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
407
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
408

Shucai Xiao's avatar
Shucai Xiao committed
409
410
411
412
413
414
415
416
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
417

418
        });
419
    }
Shucai Xiao's avatar
Shucai Xiao committed
420
421
422
423
424
425
426

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
427
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
428
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
429
            return mod->replace_instruction(
430
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
431
432
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
433

Shucai Xiao's avatar
Shucai Xiao committed
434
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
435
436
437
438
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
439
440
441
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
464
465
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
466
467
468
469
470
471
472
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
473

Shucai Xiao's avatar
Shucai Xiao committed
474
475
476
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
477

Shucai Xiao's avatar
Shucai Xiao committed
478
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
479
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
480
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
481
482
483
484
485
486
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
487
488
489
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
Paul's avatar
Paul committed
527
528
};

Shucai Xiao's avatar
Shucai Xiao committed
529
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
530

Paul's avatar
Paul committed
531
} // namespace gpu
Paul's avatar
Paul committed
532
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
533
} // namespace migraphx