simplify_algebra.cpp 52.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
55
56
57
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
58
59
}

Shucai Xiao's avatar
Shucai Xiao committed
60
61
auto reduction() { return match::name_contains("reduce"); }

62
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
63
64
65
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
66
    {
67
68
69
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71

72
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        auto ins      = r.result;
Paul's avatar
Paul committed
75
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
76
77
78
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
103
104
            return;

105
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
106
        auto new_a = m.insert_instruction(
107
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
108
109
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
110
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
111
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
112
    }
Paul's avatar
Paul committed
113
114
};

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

131
    void apply(module& m, const match::matcher_result& r) const
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
167
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
168

169
        auto new_a = m.insert_instruction(
170
            ins,
171
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
172
            a_ins->inputs().front());
173
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
174
175
176

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
177
            sliced_weights.push_back(m.insert_instruction(
178
179
180
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
181
182
183
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
184
            sliced_weights.push_back(m.insert_instruction(
185
186
187
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
188

189
        auto new_weights =
190
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
191

192
        auto new_conv = m.insert_instruction(
193
194
195
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

196
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
197
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
198
        m.replace_instruction(ins, slice1);
199
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
200
201
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
202
203
204
205
206
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
207
208
209
210
struct find_mul_dot
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
211
212
213
214
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
Paul's avatar
Paul committed
215
216
217
218
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
219
        auto ins     = r.result;
Paul's avatar
Paul committed
220
        auto dot_ins = r.instructions["dot"];
Paul's avatar
Format  
Paul committed
221
222
223
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];
Paul's avatar
Paul committed
224
225
226
227

        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
228
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
229
230
231
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
Paul's avatar
Format  
Paul committed
232
            if(not x_ins->can_eval())
Paul's avatar
Paul committed
233
                return m.end();
Paul's avatar
Format  
Paul committed
234
            auto broadcast_v        = c_ins->get_operator().to_value();
Paul's avatar
Paul committed
235
236
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
237
238
            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
Paul's avatar
Paul committed
239
240
241
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

Paul's avatar
Format  
Paul committed
242
243
        if(c_strides.back() == 1)
        {
Paul's avatar
Paul committed
244
245
            b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
246
247
        else if(c_strides[c_strides.size() - 2] == 1)
        {
Paul's avatar
Paul committed
248
249
            a_ins = add_mul_const(a_ins);
        }
Paul's avatar
Format  
Paul committed
250
        else if(c_ins->get_shape().scalar())
Paul's avatar
Paul committed
251
        {
Paul's avatar
Format  
Paul committed
252
            if(a_ins->can_eval())
Paul's avatar
Paul committed
253
254
255
256
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
257
258
        else
        {
Paul's avatar
Paul committed
259
260
261
            return;
        }

Paul's avatar
Format  
Paul committed
262
        if(contains({a_ins, b_ins}, m.end()))
Paul's avatar
Paul committed
263
264
265
266
267
268
269
270
271
272
273
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
Paul's avatar
Format  
Paul committed
274
275
276
277
        auto mul             = match::name("mul")(
            match::used_once(),
            match::either_arg(0, 1)(const_broadcast.bind("d"),
                                    match::none_of(match::is_constant()).bind("z")));
Paul's avatar
Paul committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
293
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
294
295
            return;

Paul's avatar
Format  
Paul committed
296
297
298
        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
Paul's avatar
Paul committed
299
                return;
Paul's avatar
Format  
Paul committed
300
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
Paul's avatar
Paul committed
301
302
303
                return;
        }

Paul's avatar
Format  
Paul committed
304
305
        auto broadcast_v = d_ins->get_operator().to_value();
        auto c_lens      = c_ins->get_shape().lens();
Paul's avatar
Paul committed
306
307
308
309
310
311
312
313
        std::vector<int64_t> permutation(c_lens.size());
        std::iota(permutation.begin(), permutation.end(), 0);
        if(c_ins == b_ins)
        {
            std::swap(permutation.back(), permutation[permutation.size() - 2]);
            c_lens = reorder_dims(c_lens, permutation);
        }
        broadcast_v["out_lens"] = c_lens;
Paul's avatar
Format  
Paul committed
314
315
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
Paul's avatar
Format  
Paul committed
316
317
        auto db_transpose_ins =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", permutation}}), db_ins);
Paul's avatar
Paul committed
318
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_transpose_ins);
Paul's avatar
Paul committed
319

Paul's avatar
Format  
Paul committed
320
        if(c_ins == b_ins)
Paul's avatar
Paul committed
321
322
323
324
325
326
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
Paul's avatar
Format  
Paul committed
327
            a_ins = cd_ins;
Paul's avatar
Paul committed
328
329
330
331
332
333
334
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

335
336
337
338
339
340
// ******************************
//  a * (x + b) => a * x + a * b
// ******************************
// When a * (x + b) is followed by another add of constant, then the
// additional add can be const folded. Also, better fusions can be applied
// when the add comes after.
Paul's avatar
Paul committed
341
342
343
344
345
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
346
347
348
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
349
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
350
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
351
                match::used_once()),
Paul's avatar
Paul committed
352
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
353
354
    }

355
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
356
    {
Paul's avatar
Paul committed
357
        auto ins   = r.result;
Paul's avatar
Paul committed
358
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
359
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
360
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
361
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
362

363
364
365
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
366
367
368
    }
};

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
        return match::name("convolution")(match::used_once(),
                                          match::args(add, match::is_constant().bind("w")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
431
struct find_add_lit_broadcast
Paul's avatar
Paul committed
432
433
434
435
436
437
438
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

439
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
440
441
442
443
444
445
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

446
447
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
448
449
450
451
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
452
{
Paul's avatar
Paul committed
453
454
    auto matcher() const
    {
Paul's avatar
Paul committed
455
        return match::name("add")(
Paul's avatar
Paul committed
456
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
457
458
    }

459
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
460
    {
Paul's avatar
Paul committed
461
462
463
464
465
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
466
467
468

        instruction_ref sumab;

Paul's avatar
Paul committed
469
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
470
471
472
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
473
            auto op     = a_ins->get_operator();
474
            auto presum = m.insert_instruction(
475
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
476
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
477
478
479
        }
        else
        {
480
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
481
482
        }

483
484
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
485
486
487
    }
};

Paul's avatar
Paul committed
488
489
struct find_inner_broadcast
{
490
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
491

492
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
493
    {
494
495
496
497
498
499
500
501
502
503
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
504
505
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
506
           }))
Paul's avatar
Paul committed
507
508
            return;

509
510
511
512
513
514
515
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
516
517
518
    }
};

Paul's avatar
Paul committed
519
520
struct find_dot_broadcast
{
Paul's avatar
Format  
Paul committed
521
522
523
524
    auto matcher() const
    {
        return match::name("dot")(match::all_of[match::inputs()](match::broadcast()));
    }
Paul's avatar
Paul committed
525
526
527

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
528
529
530
531
        auto ins = r.result;
        auto a   = ins->inputs()[0];
        auto b   = ins->inputs()[1];
        if(a->get_operator().name() != b->get_operator().name())
Paul's avatar
Paul committed
532
            return;
Paul's avatar
Format  
Paul committed
533
        if(ins->get_shape().lens().size() < 3)
Paul's avatar
Paul committed
534
            return;
Paul's avatar
Format  
Paul committed
535
        auto nbatch_axes      = ins->get_shape().lens().size() - 2;
Paul's avatar
Paul committed
536
537
        const auto& a_strides = a->get_shape().strides();
        const auto& b_strides = b->get_shape().strides();
Paul's avatar
Paul committed
538
        // Find leading batch axes that are broadcasted
Paul's avatar
Format  
Paul committed
539
        auto p =
Paul's avatar
Paul committed
540
541
542
543
            std::mismatch(a_strides.begin(),
                          a_strides.begin() + nbatch_axes,
                          b_strides.begin(),
                          b_strides.begin() + nbatch_axes,
Paul's avatar
Format  
Paul committed
544
                          [](auto astride, auto bstride) { return astride == 0 and bstride == 0; });
Paul's avatar
Paul committed
545
546
        auto naxes = p.first - a_strides.begin();
        assert(naxes <= nbatch_axes);
Paul's avatar
Paul committed
547
548
549
        std::vector<std::size_t> axes(naxes);
        std::iota(axes.begin(), axes.end(), 0);

Paul's avatar
Paul committed
550
        auto insert_squeeze = [&](instruction_ref b_ins) -> instruction_ref {
Paul's avatar
Format  
Paul committed
551
552
553
554
            auto input = b_ins->inputs()[0];
            std::vector<std::size_t> lens(b_ins->get_shape().lens().begin() + naxes,
                                          b_ins->get_shape().lens().end());
            if(b_ins->name() == "multibroadcast")
Paul's avatar
Paul committed
555
            {
Paul's avatar
Format  
Paul committed
556
557
                return m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", lens}}), input);
Paul's avatar
Paul committed
558
            }
Paul's avatar
Format  
Paul committed
559
            else if(b_ins->name() == "broadcast")
Paul's avatar
Paul committed
560
            {
Paul's avatar
Format  
Paul committed
561
                auto v    = b_ins->get_operator().to_value();
Paul's avatar
Paul committed
562
                auto axis = v.at("axis").to<std::size_t>() - naxes;
Paul's avatar
Format  
Paul committed
563
564
                return m.insert_instruction(
                    ins, make_op("broadcast", {{"axis", axis}, {"out_lens", lens}}), input);
Paul's avatar
Paul committed
565
566
567
            }
            assert(false);
            return m.end();
Paul's avatar
Paul committed
568
        };
Paul's avatar
Paul committed
569
570
        auto a1        = insert_squeeze(a);
        auto b1        = insert_squeeze(b);
Paul's avatar
Format  
Paul committed
571
572
        auto dot       = m.insert_instruction(ins, make_op("dot"), a1, b1);
        auto broadcast = m.insert_instruction(
Paul's avatar
Paul committed
573
            ins, make_op("multibroadcast", {{"out_lens", ins->get_shape().lens()}}), dot);
Paul's avatar
Paul committed
574
575
576
577
        m.replace_instruction(ins, broadcast);
    }
};

578
struct find_concat_op
579
580
581
{
    auto matcher() const
    {
582
        return match::name("concat")(match::any_of[match::inputs()](
Paul's avatar
Format  
Paul committed
583
584
            match::any_of(match::pointwise(), match::name("broadcast", "multibroadcast")),
            match::used_once()));
585
586
    }

587
588
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
589
    {
590
591
592
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
593
        {
594
            dim += ins->get_shape().lens().at(axis);
595
        }
596
597
598
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
599
600
    }

601
602
    static bool is_valid_op(const operation& op)
    {
Paul's avatar
Format  
Paul committed
603
604
        return contains({"broadcast", "multibroadcast"}, op.name()) or
               op.attributes().contains("pointwise");
605
606
    }

607
    void apply(module& m, const match::matcher_result& r) const
608
    {
609
610
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
611

612
613
614
615
616
617
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
618
619
            auto op = x->get_operator();
            if(not is_valid_op(op))
620
621
622
623
624
625
626
627
628
629
630
631
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }
Paul's avatar
Format  
Paul committed
632
            else if(op.name() == "multibroadcast")
Paul's avatar
Paul committed
633
634
            {
                shape bshape = (*start)->get_shape();
Paul's avatar
Format  
Paul committed
635
636
                auto input   = (*start)->inputs()[0];
                if(iaxis >= bshape.strides().size() or bshape.strides()[iaxis] == 0)
Paul's avatar
Paul committed
637
638
639
640
641
                    return {start, last};
                op.from_value({{"out_lens", get_output_lens(start, last, iaxis)}});
                auto delta = bshape.lens().size() - input->get_shape().lens().size();
                iaxis -= delta;
            }
642
643
644
645
646
647
648
649

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
650
                auto concat =
651
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
652
653
                concats.push_back(concat);
            }
654
            auto y = m.insert_instruction(ins, op, concats);
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
670
            m.replace_instruction(ins, args.front());
671
        else
672
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
673
674
675
    }
};

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
732
733
734
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
735
736
    }

Shucai Xiao's avatar
Shucai Xiao committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

756
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
757
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
774

775
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
776
777
778
779
780
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
781
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
782
783
                }

784
785
786
787
788
789
790
791
792
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

818
    void apply(module& m, const match::matcher_result& r) const
819
    {
Shucai Xiao's avatar
Shucai Xiao committed
820
        auto ins    = r.result;
821
822
823
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
824

825
        for(const auto& group : get_split_groups(m, splits))
826
        {
Shucai Xiao's avatar
Shucai Xiao committed
827
828
829
830
831
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
832
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
833
            }
834
835
836
837
838
839

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
840
            instruction_ref c = m.end();
841
842
            if(start->inputs().size() == 1)
            {
843
                c = m.insert_instruction(std::next(ins), op, ins);
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

869
                move_instructions_back(m, ins, data_args);
870
871
872
873
874
875
876

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
877
                auto concat = m.insert_instruction(
878
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
879
880
881
882
883

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
884
                c               = m.insert_instruction(std::next(ins), op, args);
885
            }
886
            if(c != m.end())
887
888
889
890
891
892
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
893
894
                    auto outputs = i->outputs();
                    for(auto output : outputs)
895
                    {
896
                        if(output->name() != "reshape")
897
                            continue;
898
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
899
                        m.replace_instruction(output, output->get_operator(), x);
900
901
                    }

902
                    m.replace_instruction(i, split->get_operator(), c);
903
904
905
906
907
908
909
910
911
912
913
914
915
916
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

917
    void apply(module& m, const match::matcher_result& r) const
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
946
947
948
949
950
951
952
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
953
954
955
956
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
957
            m.replace_instruction(concat, args.front());
958
        else
959
            m.replace_instruction(concat, concat->get_operator(), args);
960
961
962
    }
};

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

1002
    void apply(module& m, const match::matcher_result& r) const
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
1031
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1032
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
1033
1034
1035
1036
1037
1038
1039
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
1040
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1041
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
1042
1043
1044
1045
1046
1047
1048
1049
                }
                else
                    return;
            }
            else
                return;
        }

1050
        auto concat_input =
1051
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
1052
        auto concat_weights =
1053
1054
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
1055
1056
1057
    }
};

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
1068
    return (dots >= 2 or convs >= 2);
1069
1070
1071
1072
1073
1074
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

1075
    void apply(module& m, const match::matcher_result& r) const
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
1088
            // Check that non-axes match
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
1103
1104
1105
1106
1107
1108
1109
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1122
            move_instructions_back(m, input, args);
1123
            // TODO: Check if axes match
1124
            auto concat =
1125
1126
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1127
1128
1129
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1130
1131
1132
1133
1134
1135
1136
1137
1138
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1139
                int64_t len = arg->get_shape().lens()[axis];
1140
                m.replace_instruction(
1141
1142
1143
1144
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1145
1146
1147
1148
1149
1150
1151
1152
1153
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1154
1155
1156
1157
1158
1159
1160
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1161
    void apply(module& m, const match::matcher_result& r) const
1162
1163
1164
1165
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1166
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1167
1168
1169

        auto args = ins->inputs();

1170
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1171
1172
1173
    }
};

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1216
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1241
1242
1243
1244
1245
1246
1247
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1248
    void apply(module& m, const match::matcher_result& r) const
1249
1250
1251
1252
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1253
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1254
1255
1256

        auto args = ins->inputs();

1257
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1258
1259
1260
    }
};

kahmed10's avatar
kahmed10 committed
1261
1262
1263
1264
1265
1266
1267
1268
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1269
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1270
1271
1272
1273
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1274
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1275
1276
1277
    }
};

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1294
    void apply(module& m, const match::matcher_result& r) const
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1320
1321
1322
1323
1324
1325
1326
1327
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1328
        if(not same_ops(vec_rsp))
1329
1330
1331
1332
1333
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1344
1345
1346

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1347
        if(ait == rsp_strides.end())
1348
1349
1350
        {
            return;
        }
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1364
        // calculate reshape output shape
1365
        std::vector<int64_t> vec_dims(vec_rsp.size());
1366

1367
1368
1369
1370
1371
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1372

1373
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1374

1375
1376
1377
1378
1379
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1380
        auto rsp_ins = m.insert_instruction(
1381
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1382
1383

        // replace the original reshape with slice
1384
1385
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1386
        {
1387
            m.replace_instruction(
1388
1389
1390
1391
1392
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1393
            start += vec_dims[i];
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1406
    void apply(module& m, const match::matcher_result& r) const
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1426
        if(not same_ops(vec_trans))
1427
1428
1429
1430
1431
        {
            return;
        }

        // insert an transpose instruction
1432
        auto tr = m.insert_instruction(
1433
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1434
1435
1436
1437
1438

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1439
        int64_t axis_new = std::distance(perm.begin(), it);
1440
1441
1442
1443
1444
1445
1446

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1447
            m.replace_instruction(
1448
1449
1450
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1451
1452
1453
1454
        }
    }
};

1455
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1456
{
Paul's avatar
Paul committed
1457
    // Run simplifications multiple times
1458
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1459
    {
1460
        match::find_matches(m,
Paul's avatar
Paul committed
1461
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1462
                            find_dot_broadcast{},
Paul's avatar
Paul committed
1463
1464
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1465
                            find_add_convs{},
1466
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1467
                            find_mul_conv{},
1468
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1469
1470
                            find_mul_dot{},
                            find_dot_mul{},
1471
                            find_mul_add{},
1472
1473
1474
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1475
                            find_dot_add{},
1476
                            find_conv_add{},
1477
1478
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1479
                            find_rsqrt{},
1480
                            find_concat_op{},
1481
                            find_split_concat{},
1482
1483
1484
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1485
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1486
    }
Paul's avatar
Paul committed
1487
}
Paul's avatar
Paul committed
1488

Paul's avatar
Paul committed
1489
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1490
} // namespace migraphx