simplify_algebra.cpp 48 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
55
56
57
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
58
59
}

Shucai Xiao's avatar
Shucai Xiao committed
60
61
auto reduction() { return match::name_contains("reduce"); }

62
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
63
64
65
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
66
    {
67
68
69
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71

72
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        auto ins      = r.result;
Paul's avatar
Paul committed
75
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
76
77
78
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
103
104
            return;

105
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
106
        auto new_a = m.insert_instruction(
107
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
108
109
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
110
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
111
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
112
    }
Paul's avatar
Paul committed
113
114
};

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

131
    void apply(module& m, const match::matcher_result& r) const
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
167
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
168

169
        auto new_a = m.insert_instruction(
170
            ins,
171
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
172
            a_ins->inputs().front());
173
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
174
175
176

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
177
            sliced_weights.push_back(m.insert_instruction(
178
179
180
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
181
182
183
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
184
            sliced_weights.push_back(m.insert_instruction(
185
186
187
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
188

189
        auto new_weights =
190
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
191

192
        auto new_conv = m.insert_instruction(
193
194
195
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

196
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
197
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
198
        m.replace_instruction(ins, slice1);
199
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
200
201
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
202
203
204
205
206
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

207
208
209
210
211
212
// ******************************
//  a * (x + b) => a * x + a * b
// ******************************
// When a * (x + b) is followed by another add of constant, then the
// additional add can be const folded. Also, better fusions can be applied
// when the add comes after.
Paul's avatar
Paul committed
213
214
215
216
217
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
218
219
220
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
221
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
222
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
223
                match::used_once()),
Paul's avatar
Paul committed
224
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
225
226
    }

227
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
228
    {
Paul's avatar
Paul committed
229
        auto ins   = r.result;
Paul's avatar
Paul committed
230
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
231
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
232
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
233
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
234

235
236
237
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
238
239
240
    }
};

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
        return match::name("convolution")(match::used_once(),
                                          match::args(add, match::is_constant().bind("w")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
303
struct find_add_lit_broadcast
Paul's avatar
Paul committed
304
305
306
307
308
309
310
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

311
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
312
313
314
315
316
317
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

318
319
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
320
321
322
323
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
324
{
Paul's avatar
Paul committed
325
326
    auto matcher() const
    {
Paul's avatar
Paul committed
327
        return match::name("add")(
Paul's avatar
Paul committed
328
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
329
330
    }

331
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
332
    {
Paul's avatar
Paul committed
333
334
335
336
337
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
338
339
340

        instruction_ref sumab;

Paul's avatar
Paul committed
341
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
342
343
344
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
345
            auto op     = a_ins->get_operator();
346
            auto presum = m.insert_instruction(
347
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
348
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
349
350
351
        }
        else
        {
352
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
353
354
        }

355
356
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
357
358
359
    }
};

Paul's avatar
Paul committed
360
361
struct find_inner_broadcast
{
362
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
363

364
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
365
    {
366
367
368
369
370
371
372
373
374
375
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
376
377
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
378
           }))
Paul's avatar
Paul committed
379
380
            return;

381
382
383
384
385
386
387
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
388
389
390
    }
};

Paul's avatar
Paul committed
391
392
struct find_dot_broadcast
{
Paul's avatar
Format  
Paul committed
393
394
395
396
    auto matcher() const
    {
        return match::name("dot")(match::all_of[match::inputs()](match::broadcast()));
    }
Paul's avatar
Paul committed
397
398
399

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
400
401
402
403
        auto ins = r.result;
        auto a   = ins->inputs()[0];
        auto b   = ins->inputs()[1];
        if(a->get_operator().name() != b->get_operator().name())
Paul's avatar
Paul committed
404
            return;
Paul's avatar
Format  
Paul committed
405
        if(ins->get_shape().lens().size() < 3)
Paul's avatar
Paul committed
406
407
            return;
        auto nbatch_axes = ins->get_shape().lens().size() - 2;
Paul's avatar
Paul committed
408
409
        const auto& a_strides = a->get_shape().strides();
        const auto& b_strides = b->get_shape().strides();
Paul's avatar
Paul committed
410
        // Find leading batch axes that are broadcasted
Paul's avatar
Format  
Paul committed
411
        auto p =
Paul's avatar
Paul committed
412
413
414
415
            std::mismatch(a_strides.begin(),
                          a_strides.begin() + nbatch_axes,
                          b_strides.begin(),
                          b_strides.begin() + nbatch_axes,
Paul's avatar
Format  
Paul committed
416
                          [](auto astride, auto bstride) { return astride == 0 and bstride == 0; });
Paul's avatar
Paul committed
417
418
        auto naxes = p.first - a_strides.begin();
        assert(naxes <= nbatch_axes);
Paul's avatar
Paul committed
419
420
421
        std::vector<std::size_t> axes(naxes);
        std::iota(axes.begin(), axes.end(), 0);

Paul's avatar
Paul committed
422
        auto insert_squeeze = [&](instruction_ref b_ins) -> instruction_ref {
Paul's avatar
Format  
Paul committed
423
            auto input        = b_ins->inputs()[0];
Paul's avatar
Paul committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
            std::vector<std::size_t> lens(b_ins->get_shape().lens().begin() + naxes, b_ins->get_shape().lens().end());
            if (b_ins->name() == "multibroadcast")
            {
                return m.insert_instruction(ins, make_op("multibroadcast", {{"out_lens", lens}}), input);
            }
            else if (b_ins->name() == "broadcast")
            {
                auto v = b_ins->get_operator().to_value();
                auto axis = v.at("axis").to<std::size_t>() - naxes;
                return m.insert_instruction(ins, make_op("broadcast", {{"axis", axis}, {"out_lens", lens}}), input);

            }
            assert(false);
            return m.end();
Paul's avatar
Paul committed
438
        };
Paul's avatar
Paul committed
439
440
        auto a1        = insert_squeeze(a);
        auto b1        = insert_squeeze(b);
Paul's avatar
Format  
Paul committed
441
442
        auto dot       = m.insert_instruction(ins, make_op("dot"), a1, b1);
        auto broadcast = m.insert_instruction(
Paul's avatar
Paul committed
443
            ins, make_op("multibroadcast", {{"out_lens", ins->get_shape().lens()}}), dot);
Paul's avatar
Paul committed
444
445
446
447
        m.replace_instruction(ins, broadcast);
    }
};

448
struct find_concat_op
449
450
451
{
    auto matcher() const
    {
452
        return match::name("concat")(match::any_of[match::inputs()](
Paul's avatar
Format  
Paul committed
453
454
            match::any_of(match::pointwise(), match::name("broadcast", "multibroadcast")),
            match::used_once()));
455
456
    }

457
458
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
459
    {
460
461
462
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
463
        {
464
            dim += ins->get_shape().lens().at(axis);
465
        }
466
467
468
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
469
470
    }

471
472
    static bool is_valid_op(const operation& op)
    {
Paul's avatar
Format  
Paul committed
473
474
        return contains({"broadcast", "multibroadcast"}, op.name()) or
               op.attributes().contains("pointwise");
475
476
    }

477
    void apply(module& m, const match::matcher_result& r) const
478
    {
479
480
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
481

482
483
484
485
486
487
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
488
489
            auto op = x->get_operator();
            if(not is_valid_op(op))
490
491
492
493
494
495
496
497
498
499
500
501
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }
Paul's avatar
Format  
Paul committed
502
            else if(op.name() == "multibroadcast")
Paul's avatar
Paul committed
503
504
            {
                shape bshape = (*start)->get_shape();
Paul's avatar
Format  
Paul committed
505
506
                auto input   = (*start)->inputs()[0];
                if(iaxis >= bshape.strides().size() or bshape.strides()[iaxis] == 0)
Paul's avatar
Paul committed
507
508
509
510
511
                    return {start, last};
                op.from_value({{"out_lens", get_output_lens(start, last, iaxis)}});
                auto delta = bshape.lens().size() - input->get_shape().lens().size();
                iaxis -= delta;
            }
512
513
514
515
516
517
518
519

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
520
                auto concat =
521
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
522
523
                concats.push_back(concat);
            }
524
            auto y = m.insert_instruction(ins, op, concats);
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
540
            m.replace_instruction(ins, args.front());
541
        else
542
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
543
544
545
    }
};

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
602
603
604
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
605
606
    }

Shucai Xiao's avatar
Shucai Xiao committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

626
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
627
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
644

645
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
646
647
648
649
650
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
651
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
652
653
                }

654
655
656
657
658
659
660
661
662
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

688
    void apply(module& m, const match::matcher_result& r) const
689
    {
Shucai Xiao's avatar
Shucai Xiao committed
690
        auto ins    = r.result;
691
692
693
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
694

695
        for(const auto& group : get_split_groups(m, splits))
696
        {
Shucai Xiao's avatar
Shucai Xiao committed
697
698
699
700
701
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
702
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
703
            }
704
705
706
707
708
709

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
710
            instruction_ref c = m.end();
711
712
            if(start->inputs().size() == 1)
            {
713
                c = m.insert_instruction(std::next(ins), op, ins);
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

739
                move_instructions_back(m, ins, data_args);
740
741
742
743
744
745
746

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
747
                auto concat = m.insert_instruction(
748
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
749
750
751
752
753

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
754
                c               = m.insert_instruction(std::next(ins), op, args);
755
            }
756
            if(c != m.end())
757
758
759
760
761
762
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
763
764
                    auto outputs = i->outputs();
                    for(auto output : outputs)
765
                    {
766
                        if(output->name() != "reshape")
767
                            continue;
768
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
769
                        m.replace_instruction(output, output->get_operator(), x);
770
771
                    }

772
                    m.replace_instruction(i, split->get_operator(), c);
773
774
775
776
777
778
779
780
781
782
783
784
785
786
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

787
    void apply(module& m, const match::matcher_result& r) const
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
816
817
818
819
820
821
822
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
823
824
825
826
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
827
            m.replace_instruction(concat, args.front());
828
        else
829
            m.replace_instruction(concat, concat->get_operator(), args);
830
831
832
    }
};

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

872
    void apply(module& m, const match::matcher_result& r) const
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
901
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
902
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
903
904
905
906
907
908
909
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
910
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
911
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
912
913
914
915
916
917
918
919
                }
                else
                    return;
            }
            else
                return;
        }

920
        auto concat_input =
921
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
922
        auto concat_weights =
923
924
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
925
926
927
    }
};

928
929
930
931
932
933
934
935
936
937
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
938
    return (dots >= 2 or convs >= 2);
939
940
941
942
943
944
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

945
    void apply(module& m, const match::matcher_result& r) const
946
947
948
949
950
951
952
953
954
955
956
957
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
958
            // Check that non-axes match
959
960
961
962
963
964
965
966
967
968
969
970
971
972
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
973
974
975
976
977
978
979
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
980
981
982
983
984
985
986
987
988
989
990
991
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

992
            move_instructions_back(m, input, args);
993
            // TODO: Check if axes match
994
            auto concat =
995
996
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
997
998
999
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1000
1001
1002
1003
1004
1005
1006
1007
1008
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1009
                int64_t len = arg->get_shape().lens()[axis];
1010
                m.replace_instruction(
1011
1012
1013
1014
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1015
1016
1017
1018
1019
1020
1021
1022
1023
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1024
1025
1026
1027
1028
1029
1030
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1031
    void apply(module& m, const match::matcher_result& r) const
1032
1033
1034
1035
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1036
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1037
1038
1039

        auto args = ins->inputs();

1040
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1041
1042
1043
    }
};

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1086
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1111
1112
1113
1114
1115
1116
1117
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1118
    void apply(module& m, const match::matcher_result& r) const
1119
1120
1121
1122
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1123
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1124
1125
1126

        auto args = ins->inputs();

1127
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1128
1129
1130
    }
};

kahmed10's avatar
kahmed10 committed
1131
1132
1133
1134
1135
1136
1137
1138
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1139
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1140
1141
1142
1143
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1144
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1145
1146
1147
    }
};

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1164
    void apply(module& m, const match::matcher_result& r) const
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1190
1191
1192
1193
1194
1195
1196
1197
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1198
        if(not same_ops(vec_rsp))
1199
1200
1201
1202
1203
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1214
1215
1216

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1217
        if(ait == rsp_strides.end())
1218
1219
1220
        {
            return;
        }
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1234
        // calculate reshape output shape
1235
        std::vector<int64_t> vec_dims(vec_rsp.size());
1236

1237
1238
1239
1240
1241
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1242

1243
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1244

1245
1246
1247
1248
1249
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1250
        auto rsp_ins = m.insert_instruction(
1251
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1252
1253

        // replace the original reshape with slice
1254
1255
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1256
        {
1257
            m.replace_instruction(
1258
1259
1260
1261
1262
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1263
            start += vec_dims[i];
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1276
    void apply(module& m, const match::matcher_result& r) const
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1296
        if(not same_ops(vec_trans))
1297
1298
1299
1300
1301
        {
            return;
        }

        // insert an transpose instruction
1302
        auto tr = m.insert_instruction(
1303
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1304
1305
1306
1307
1308

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1309
        int64_t axis_new = std::distance(perm.begin(), it);
1310
1311
1312
1313
1314
1315
1316

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1317
            m.replace_instruction(
1318
1319
1320
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1321
1322
1323
1324
        }
    }
};

1325
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1326
{
Paul's avatar
Paul committed
1327
    // Run simplifications multiple times
1328
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1329
    {
1330
        match::find_matches(m,
Paul's avatar
Paul committed
1331
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1332
                            find_dot_broadcast{},
Paul's avatar
Paul committed
1333
1334
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1335
                            find_add_convs{},
1336
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1337
                            find_mul_conv{},
1338
                            find_mul_slice_conv{},
1339
                            find_mul_add{},
1340
1341
1342
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1343
                            find_dot_add{},
1344
                            find_conv_add{},
1345
1346
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1347
                            find_rsqrt{},
1348
                            find_concat_op{},
1349
                            find_split_concat{},
1350
1351
1352
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1353
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1354
    }
Paul's avatar
Paul committed
1355
}
Paul's avatar
Paul committed
1356

Paul's avatar
Paul committed
1357
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1358
} // namespace migraphx