lowering.cpp 21.8 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
60
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
61
62
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
63

64
    context& get_context() const
65
66
67
68
69
70
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
71
72
73
74
75
76
77
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

78
79
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
80
        this->last = instruction::get_output_alias(std::prev(mod->end()));
81
82
        if(this->last->name() == "@return")
        {
83
            const auto& prog_outputs = last->inputs();
84
85
86
87
88
89
90
91
92
93
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
94
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
95
96
97
98
            }
        }
    }

99
100
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
101
        assert(mod != nullptr);
102
        assert(pass != nullptr);
103

Shucai Xiao's avatar
Shucai Xiao committed
104
105
106
107
108
109
110
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
111
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
112
        create_output_names();
Paul's avatar
Paul committed
113

114
115
116
117
118
119
120
121
122
123
124
125
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
126
        add_generic_op("equal");
127
128
129
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
130
131
        add_generic_op("greater");
        add_generic_op("less");
132
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
133
134
135
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
136
137
138
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
139
        add_generic_op("not");
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
155
        add_generic_op("where");
156

Shucai Xiao's avatar
Shucai Xiao committed
157
        add_extend_op("abs");
158
159
160
161
162
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
163
        add_extend_op("elu");
164
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
165
        add_extend_op("leaky_relu");
166
        add_extend_op("logsoftmax");
turneram's avatar
turneram committed
167
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("nonzero");
169
        add_extend_op("pad");
170
        add_extend_op("pooling");
171
        add_extend_op("prefix_scan_sum");
172
173
174
175
176
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
177
        add_extend_op("reverse");
178
179
180
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
181
        add_extend_op("scatter");
182
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op("topk");
184

185
186
        add_precompile_op("pointwise");

Shucai Xiao's avatar
Shucai Xiao committed
187
        add_batch_norm_inference_op();
188
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
189
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
190
191
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
192
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
193
        add_loop_op();
194
        add_lrn_op();
Shucai Xiao's avatar
Shucai Xiao committed
195
        add_neg_op();
196
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
197
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
198
        add_roialign();
199
200
    }

201
202
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
203
        if(not offload_copy)
204
            return;
205

Shucai Xiao's avatar
Shucai Xiao committed
206
        for(auto ins : iterator_for(*mod))
207
208
209
        {
            if(ins->name() != "@param")
                continue;
210

Shucai Xiao's avatar
Shucai Xiao committed
211
212
213
214
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

215
216
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
217
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
218
            mod->replace_instruction(ins, c);
219
        }
220
221

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
222
        auto ret = std::prev(mod->end());
223
224
        if(ret->name() == "@return")
        {
225
            const auto& inputs = ret->inputs();
226
227
228

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
229
            for(const auto& in : inputs)
230
            {
231
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
232
233
234
235
236
237
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
238
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
239
        }
240
241
    }

Paul's avatar
Paul committed
242
243
    void apply()
    {
244
        init();
Shucai Xiao's avatar
Shucai Xiao committed
245
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
246
        {
Paul's avatar
Paul committed
247
            auto s = it->get_shape();
248
            if(apply_map.count(it->name()) > 0)
249
            {
250
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
251
            }
Paul's avatar
Paul committed
252
        }
253

254
        copy_params();
Paul's avatar
Paul committed
255
256
    }

Paul's avatar
Paul committed
257
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
258
    {
259
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
260
        if(offload_copy)
Paul's avatar
Paul committed
261
        {
262
263
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
264
265
            return result;
        }
266
267
268
269

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
270
            return mod->add_parameter(prog_output_names[ins_alias], s);
271
272
273
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
274
            return mod->add_parameter("output", s);
275
276
        }

277
278
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
279
280
    }

Shucai Xiao's avatar
Shucai Xiao committed
281
    void add_convolution_op()
Paul's avatar
Paul committed
282
    {
283
284
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
285

286
            auto conv = miopen_convolution{op, make_conv(op)};
287
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
288

289
290
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
291

Shucai Xiao's avatar
Shucai Xiao committed
292
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
307

Shucai Xiao's avatar
Shucai Xiao committed
308
            return mod->replace_instruction(
309
310
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
311
312
    }

313
314
    template <typename Op>
    void add_gemm_op(const std::string& name)
315
316
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
317
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
318
            if(refs.size() == 2)
319
320
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
321
322
323
324
325
326
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
327
                {
328
329
330
331
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
332
333
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
334
335
336
337
                else
                {
                    refs.push_back(refs.back());
                }
338
            }
Shucai Xiao's avatar
Shucai Xiao committed
339
            return mod->replace_instruction(
340
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format}, refs);
341
342
343
        });
    }

344
345
346
347
348
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
349
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
350

Shucai Xiao's avatar
Shucai Xiao committed
351
            auto args      = ins->inputs();
352
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
353
354
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
355
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
356
357
358
        });
    }

359
360
361
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
362
    {
363
        apply_map.emplace(op_name, [=](instruction_ref ins) {
364
365
366
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
367

Shucai Xiao's avatar
Shucai Xiao committed
368
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
369
        });
Paul's avatar
Paul committed
370
    }
Paul's avatar
Paul committed
371

372
373
374
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
375
    {
376
377
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
378
379
380
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
381

Shucai Xiao's avatar
Shucai Xiao committed
382
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
383
        });
Khalique's avatar
Khalique committed
384
385
    }

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    void add_precompile_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);

            return mod->replace_instruction(
                ins,
                make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
                refs,
                ins->module_inputs());
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
401
    void add_batch_norm_inference_op()
402
    {
403
404
405
406
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
421
422
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
423
424
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
425
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
426

Shucai Xiao's avatar
Shucai Xiao committed
427
428
429
430
431
432
433
434
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
435

436
        });
437
    }
Shucai Xiao's avatar
Shucai Xiao committed
438
439
440
441
442
443
444

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
445
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
446
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
447
            return mod->replace_instruction(
448
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
449
450
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
451

Shucai Xiao's avatar
Shucai Xiao committed
452
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
453
454
455
456
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
457
458
459
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
482
483
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
484
485
486
487
488
489
490
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
491

Shucai Xiao's avatar
Shucai Xiao committed
492
493
494
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
495

Shucai Xiao's avatar
Shucai Xiao committed
496
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
497
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
498
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
499
500
501
502
503
504
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
505
506
507
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
565
566
567
568
569

    void add_lrn_op()
    {
        apply_map.emplace("lrn", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
570
            auto in     = ins->inputs().front();
571
572
573
574
575
576
            auto output = insert_allocation(ins, s);

            auto type = s.type();
            if(type == shape::half_type)
            {
                shape s32{shape::float_type, s.lens()};
Shucai Xiao's avatar
Shucai Xiao committed
577
                auto cout32    = mod->insert_instruction(ins, make_op("hip::allocate", {{"shape", to_value(s32)}}));
Shucai Xiao's avatar
Shucai Xiao committed
578
579
580
                auto cop32     = make_op("convert", {{"target_type", shape::float_type}});
                auto convert32 = mod->insert_instruction(
                    ins, make_op("gpu::convert", cop32.to_value()), in, cout32);
Shucai Xiao's avatar
Shucai Xiao committed
581
                auto lout32 = mod->insert_instruction(ins, make_op("hip::allocate", {{"shape", to_value(s32)}}));
Shucai Xiao's avatar
Shucai Xiao committed
582
583
584
585
586
                auto lrn32  = mod->insert_instruction(
                    ins, make_op("gpu::lrn", ins->get_operator().to_value()), convert32, lout32);
                auto cop16  = make_op("convert", {{"target_type", shape::half_type}});
                auto lout16 = mod->insert_instruction(
                    ins, make_op("gpu::convert", cop16.to_value()), lrn32, output);
587
588
589
590
                return mod->replace_instruction(ins, lout16);
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
591
592
                auto lrn16 = mod->insert_instruction(
                    ins, make_op("gpu::lrn", ins->get_operator().to_value()), in, output);
593
594
595
596
                return mod->replace_instruction(ins, lrn16);
            }
        });
    }
Paul's avatar
Paul committed
597
598
};

Shucai Xiao's avatar
Shucai Xiao committed
599
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
600

Paul's avatar
Paul committed
601
} // namespace gpu
Paul's avatar
Paul committed
602
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
603
} // namespace migraphx