task.py 37 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
46
    "winograd_schema"
47
48
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
haileyschoelkopf's avatar
haileyschoelkopf committed
67
    template_aliases: str = ""
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
70
    gold_alias: Union[Callable, str] = None
71
    use_prompt: str = None
72
    description: str = ""
73
74
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
75
    # runtime configuration options
76
    num_fewshot: int = 0
77
    # scoring options
78
    metric_list: str = None
lintangsutawika's avatar
lintangsutawika committed
79
    gold_alias: Union[Callable, str] = None
80
    create_choices: Union[Callable, str] = None
81
    output_type: str = "greedy_until"
82
    generation_kwargs: dict = None
83
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
84
    filter_list: Union[str, list] = None
85
86
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
87

lintangsutawika's avatar
lintangsutawika committed
88
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
89

90
91
92
93
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
haileyschoelkopf's avatar
haileyschoelkopf committed
94
        if type(self.template_aliases) == str:
95
96
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
97

98
99
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
100

101
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
102
                self.gold_alias = self.template_aliases + self.gold_alias
103

haileyschoelkopf's avatar
haileyschoelkopf committed
104
        if self.generation_kwargs:
105
106
107
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
haileyschoelkopf's avatar
haileyschoelkopf committed
108
        elif self.output_type == "greedy_until":
109
110
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
111

haileyschoelkopf's avatar
haileyschoelkopf committed
112
113
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

114
115
116
    def __getitem__(self, item):
        return getattr(self, item)

117
    def to_dict(self):
118
119
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
120
        Used for dumping results alongside full task configuration
121

haileyschoelkopf's avatar
haileyschoelkopf committed
122
123
124
125
126
127
128
129
130
131
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
132
133
134
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        return cfg_dict
136

137
138
139
140
141
142
143
144
145
146
147
148

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
149

150
151
152
153
154
155
156
157
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
193
        self._config = TaskConfig(**config) if config else TaskConfig()
194
195
196

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
197
            for name, components in self._config.get(
198
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
199
            ):
200
201
202
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
203
204
205
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
232
233
234
235
236
237
238
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

276
277
278
279
280
281
282
283
284
285
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
286
            eval_logger.warning(
287
                "has_training_docs and has_validation_docs are False"
288
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
289
            )
290
291
            return self.test_docs()

292
293
294
295
296
297
298
299
300
301
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
302
303
304
305
306
307
308
309
    
    def create_choices(self, doc):
        if self._config.create_choices is None:
            return ast.literal_eval(
                    utils.apply_template(
                        self._config.template_aliases + "{{answer_choices}}", doc
                        )
                    )
Benjamin Fattori's avatar
Benjamin Fattori committed
310
311
        elif type(self._config.create_choices) == str:
            return utils.apply_template(self._config.create_choices, doc)
312
313
        else:
            return self._config.create_choices(doc)
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

342
    def build_all_requests(self, limit=None, rank=None, world_size=None):
343
344
345
346
347
348
349
350
351
352
353
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
354
355
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
356
        ):
357
            # sample fewshot context #TODO: need to offset doc_id by rank now!
358
359
360
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
361

haileyschoelkopf's avatar
haileyschoelkopf committed
362
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
363
364
365
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
366
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
367
            )
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
393
            The number of times each instance in a dataset is inferred on. Defaults to 1,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
429
430
431
432
433
434
435
436
437
438
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
459
460
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
461
        else:
lintangsutawika's avatar
lintangsutawika committed
462
463
464
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
465
466
467
468
469
470

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
471
472
473
474
475
476
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
477

478
    def dump_config(self):
479
        """Returns a dictionary representing the task's config.
480
481
482
483
484

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
485
        # (num_fewshot)
486
487
        return self._config.to_dict()

488
489
490

class ConfigurableTask(Task):

491
    VERSION = "Yaml"
492
    OUTPUT_TYPE = None
493
    CONFIG = None
494
495
496
497

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
498
        # Get pre-configured attributes
499
        self._config = self.CONFIG
500

501
502
        # Use new configurations if there was no preconfiguration
        if self._config is None:
503
            self._config = TaskConfig(**config)
504
505
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
506
            if config is not None:
507
                self._config.__dict__.update(config)
508

509
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
510
511
512
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
513
514

        if self._config.output_type is not None:
515
            assert self._config.output_type in ALL_OUTPUT_TYPES
516
517
            self.OUTPUT_TYPE = self._config.output_type

518
519
520
521
522
523
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

524
525
526
527
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
528

529
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
530
        if self._config.metric_list is None:
531
            # TODO: handle this in TaskConfig.__post_init__ ?
532
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
535
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
536
537
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
538
539
540
541
542
543
544
545
546
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
547
548
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
549

550
                if "aggregation" in metric_config:
551
                    agg_name = metric_config["aggregation"]
552
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
553
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
554
555
556
557
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
558
                else:
559
560

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
561
                    metric_agg = get_default_aggregation(metric_name)
562
                    eval_logger.warning(
563
564
565
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
566
                    )
567
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
568

569
570
571
572
573
574
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
575
576
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
577
                        f"higher_is_better={is_higher_better(metric_name)}"
578
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
579
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
580

581
        self.download(self._config.dataset_kwargs)
582
583
584
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
585
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
586
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
587
588
589
590
591
592
593
594
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
595
596
597
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
598
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
599
        else:
600
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
601
602

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
603
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
604
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
605
606
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
607
608
609
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
610
611
612
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
613
            )
614

615
616
617
618
619
620
621
622
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

653
    def fewshot_docs(self):
654
        if self._config.fewshot_split is not None:
655
            return self.dataset[self._config.fewshot_split]
656
657
658
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
659
                    f"Task '{self._config.task}': "
660
661
662
663
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
664

665
666
667
668
669
670
671
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

672
673
674
675
676
677
678
679
680
681
682
683
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
684
685
686

        if self.prompt is not None:
            doc_to_text = self.prompt
687
688
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
689

690
691
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
692
        elif callable(doc_to_text):
693
694
695
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
696
        else:
697
            print(type(doc_to_text))
698
            raise TypeError
699
700

    def doc_to_target(self, doc):
701
702
703

        if self.prompt is not None:
            doc_to_target = self.prompt
704
705
706
        else:
            doc_to_target = self._config.doc_to_target

707
708
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
709
        elif callable(doc_to_target):
710
711
712
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
713
714
        else:
            raise TypeError
715

716
    def gold_alias(self, doc):
717
718
719
720
721
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
722
        if self._config.gold_alias is not None:
723
724
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
725
            return self.doc_to_target(doc)
726
727
728
729
730
731
732
733
734
735

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

736
737
    def construct_requests(self, doc, ctx, **kwargs):

738
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
739
            arguments = (ctx, self.doc_to_target(doc))
740
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
741
            arguments = (self.doc_to_target(doc),)
742
        elif self.OUTPUT_TYPE == "multiple_choice":
743
744
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
745
746
            choices = self.create_choices(doc)
            
747
            request_list = [
748
749
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
750
                    doc=doc,
751
                    arguments=(ctx, " {}".format(choice)),
752
                    idx=i,
753
754
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
755
                for i, choice in enumerate(choices)
756
            ]
757
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
758
            if "acc_mutual_info" in self._metric_fn_list.keys():
759
760
761
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
762
                # here mutual info refers to calculating
763
764
765
766
767
768
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
769
                            doc=doc,
770
771
772
773
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
774
                        for i, choice in enumerate(choices)
775
776
777
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
778

779
        elif self.OUTPUT_TYPE == "greedy_until":
780
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
781

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        elif self.OUTPUT_TYPE == "winograd_schema":
            # similar to multiple_choice task type except each request contains
            # multiple differing contexts with the same continuation

            contexts = self.create_choices(doc)
            choice = self.doc_to_target(doc)
            
            request_list = [
                Instance(
                    request_type="loglikelihood",
                    doc=doc,
                    arguments=(context, " {}".format(choice)),
                    idx=i,
                    **kwargs,
                )
                for i, context in enumerate(contexts)
            ]
Benjamin Fattori's avatar
Benjamin Fattori committed
799
            
800
801
            return request_list

lintangsutawika's avatar
lintangsutawika committed
802
        return Instance(
lintangsutawika's avatar
lintangsutawika committed
803
804
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
805
806
807

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
808
809
810
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

811
        result_dict = {}
812
        use_metric = list(self._metric_fn_list.keys())
813
814
815
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
816
817
818
819
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
820
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
821
            (loglikelihood,) = results
822
823
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
824
            return {
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
840
            }
841
        elif self.OUTPUT_TYPE == "multiple_choice":
842
843

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
844
845
846
847
848
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

849
            # retrieve choices in List[str] form, to compute choice lengths, etc.
850
            choices = self.create_choices(doc)
851
852
            if (
                2 * len(choices) == len(lls)
853
                and "acc_mutual_info" in self._metric_fn_list.keys()
854
855
856
857
858
859
860
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
861

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
862
863
            pred = np.argmax(lls)

864
            acc = 1.0 if np.argmax(lls) == gold else 0.0
865
866
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
867
868

            result_dict = {
869
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
870
871
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
872
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
873
874
            }

875
            if "exact_match" in self._metric_fn_list.keys():
876
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
877
                is_greedy = is_greedy[gold]  # take value for the gold answer
878
879
                result_dict["exact_match"] = int(is_greedy)

880
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
881
882
883
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
884
885
886
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        elif self.OUTPUT_TYPE == "winograd_schema":

            lls, is_greedy = zip(*results)
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

            pred = np.argmax(lls)
            acc = 1.0 if np.argmax(lls) == gold else 0.0

            result_dict = {
                **({"acc": acc} if "acc" in use_metric else {}),
            }

902
903
904
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
905
                gold = self.gold_alias(doc)
906
907
908
            else:
                gold = self.doc_to_target(doc)

909
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
910
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
911
912
913
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
914
                )
915

lintangsutawika's avatar
lintangsutawika committed
916
                result_dict = {**result_dict, **_dict}
917
        else:
lintangsutawika's avatar
lintangsutawika committed
918
919
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
920
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', 'multiple_choice' or 'winograd_schema' ",
921
            )
922
923
924
925
926
927
928

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
929
        return self._higher_is_better
930
931
932
933
934
935
936
937
938
939


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
940
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
941
942
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
943
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
944
                doc=doc,
945
                arguments=(ctx, " {}".format(choice)),
946
                idx=i,
947
948
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
949
950
            for i, choice in enumerate(doc["choices"])
        ]
951
952

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
953
954
955
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
980
class PerplexityTask(Task):
981
982
983
984
985
986
987
988
989
990

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
991
    def fewshot_context(self, doc, num_fewshot, rnd=None):
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1020
1021
1022
1023
1024
1025
1026
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1027
1028
1029

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1030
1031
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))