utils.py 18.2 KB
Newer Older
1
2
import collections
import fnmatch
3
import hashlib
4
import importlib.util
5
import inspect
6
import json
7
8
9
import logging
import os
import re
Baber's avatar
Baber committed
10
from collections.abc import Generator
11
from dataclasses import asdict, is_dataclass
Baber's avatar
Baber committed
12
from functools import lru_cache, partial, wraps
13
from itertools import islice
14
from pathlib import Path
Baber's avatar
Baber committed
15
from typing import Any, Callable, Optional
16

Lintang Sutawika's avatar
Lintang Sutawika committed
17
import numpy as np
18
import yaml
19
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
20

lintangsutawika's avatar
lintangsutawika committed
21

22
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
23

24
25
26
27
28
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
29

Lintang Sutawika's avatar
Lintang Sutawika committed
30
31
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
Baber Abbasi's avatar
Baber Abbasi committed
32
33
34
35
36
37
38
39
40
41
42
    class CustomFormatter(logging.Formatter):
        def format(self, record):
            if record.name.startswith("lm_eval."):
                record.name = record.name[len("lm_eval.") :]
            return super().format(record)

    formatter = CustomFormatter(
        "%(asctime)s %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
        datefmt="%Y-%m-%d:%H:%M:%S",
    )

Lintang Sutawika's avatar
Lintang Sutawika committed
43
44
45
46
47
48
49
50
51
52
53
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
Baber Abbasi's avatar
Baber Abbasi committed
54

Lintang Sutawika's avatar
Lintang Sutawika committed
55
    if not logging.root.handlers:
Baber Abbasi's avatar
Baber Abbasi committed
56
57
58
59
60
61
62
        handler = logging.StreamHandler()
        handler.setFormatter(formatter)

        root_logger = logging.getLogger()
        root_logger.addHandler(handler)
        root_logger.setLevel(log_level)

Lintang Sutawika's avatar
Lintang Sutawika committed
63
64
65
66
67
68
69
70
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


71
72
73
74
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


75
76
77
78
79
80
81
82
83
84
85
86
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
87
88
89
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
90
91
92
93
94

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

Baber's avatar
Baber committed
95
    return re.split(r"(?<!\\)" + sep_char, text, maxsplit=maxsplit)
96
97


haileyschoelkopf's avatar
haileyschoelkopf committed
98
99
100
101
102
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
103
104
105
106
107
108
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
109
110


111
def handle_non_serializable(o):
Baber's avatar
Baber committed
112
    if isinstance(o, np.integer):
113
114
115
116
117
118
119
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


120
121
122
123
124
125
126
127
128
129
130
131
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Baber Abbasi's avatar
Baber Abbasi committed
132
def simple_parse_args_string(args_string: Optional[str]) -> dict:
Jason Phang's avatar
gpt3  
Jason Phang committed
133
134
135
136
137
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Baber Abbasi's avatar
Baber Abbasi committed
138
139
    if args_string is None:
        return {}
Jason Phang's avatar
Jason Phang committed
140
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
141
142
    if not args_string:
        return {}
143
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
144
    args_dict = {
145
146
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
147
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
148
    return args_dict
Leo Gao's avatar
Leo Gao committed
149

Fabrizio Milo's avatar
Fabrizio Milo committed
150

Leo Gao's avatar
Leo Gao committed
151
152
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
153
        yield from iter
Leo Gao's avatar
Leo Gao committed
154
155


156
157
158
159
160
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
161

162
163
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
164

gakada's avatar
gakada committed
165
166
167
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
168
    if isinstance(patterns, str):
169
170
        patterns = [patterns]

gakada's avatar
gakada committed
171
172
173
174
175
176
177
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Baber Abbasi's avatar
Baber Abbasi committed
178
def softmax(x) -> np.ndarray:
Lintang Sutawika's avatar
Lintang Sutawika committed
179
180
181
182
183
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Baber Abbasi's avatar
Baber Abbasi committed
184
def general_detokenize(string) -> str:
Leo Gao's avatar
Leo Gao committed
185
186
187
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
188
189
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
190
    string = re.sub(r" (['.,])", r"\1", string)
191
192
193
    return string


194
195
196
197
198
199
200
201
202
203
204
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
205
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


Baber's avatar
Baber committed
222
def get_latest_filename(filenames: list[str]) -> str:
223
224
225
226
227
228
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


Baber's avatar
Baber committed
229
def get_results_filenames(filenames: list[str]) -> list[str]:
230
231
232
233
234
235
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


Baber's avatar
Baber committed
236
def get_sample_results_filenames(filenames: list[str]) -> list[str]:
237
238
239
240
241
242
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


243
def get_rolling_token_windows(
Baber's avatar
Baber committed
244
245
    token_list: list[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[tuple[list[int], list[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
272
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
273
274
275
276
277
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
278

Jason Phang's avatar
Jason Phang committed
279
        yield (
lintangsutawika's avatar
lintangsutawika committed
280
281
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
282
283
284
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
285

286
def make_disjoint_window(
Baber's avatar
Baber committed
287
288
    pair: tuple[list[int], list[int]],
) -> tuple[list[int], list[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
289
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
290
    a, b = pair
291
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
292

Jason Phang's avatar
Jason Phang committed
293

294
295
296
297
298
299
300
301
302
303
304
305
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


306
class Reorderer:
Baber's avatar
Baber committed
307
    def __init__(self, arr: list[Any], fn: Callable) -> None:
baberabb's avatar
baberabb committed
308
309
310
311
312
313
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
314
315
316
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
317
318
319
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
320
321
322
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
323

324
    def get_reordered(self):
baberabb's avatar
baberabb committed
325
326
327
328
329
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
330
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
331

332
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
333
334
335
336
337
338
339
340
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
341
342
343
344
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
345
            for ind in inds:
346
347
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
348

349
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
350

351
352
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
353

Lintang Sutawika's avatar
Lintang Sutawika committed
354
def make_table(result_dict, column: str = "results", sort_results: bool = False):
355
    """Generate table of results."""
356
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
357

lintangsutawika's avatar
lintangsutawika committed
358
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
359
360
361
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
362

lintangsutawika's avatar
lintangsutawika committed
363
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
364
        column_name,
lintangsutawika's avatar
lintangsutawika committed
365
366
        "Version",
        "Filter",
367
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
368
        "Metric",
369
        "",
lintangsutawika's avatar
lintangsutawika committed
370
371
372
373
        "Value",
        "",
        "Stderr",
    ]
374

lintangsutawika's avatar
lintangsutawika committed
375
376
377
378
379
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

380
381
    values = []

382
383
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
384
385
386
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
387
388
389
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
390
391
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
Baber's avatar
Baber committed
392
393
        # TODO: fix this
        # higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
394
395
396
397

        if "alias" in dic:
            k = dic.pop("alias")

398
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
399
        metric_items = sorted(metric_items)
400
401

        for (mf), v in metric_items:
402
            m, _, f = mf.partition(",")
403
404
405
            if m.endswith("_stderr"):
                continue

Baber's avatar
Baber committed
406
407
408
            # hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")
            # TODO: fix
            hib = "↑"
409

Baber's avatar
Baber committed
410
            v = f"{v:.4f}" if isinstance(v, float) else v
Lintang Sutawika's avatar
Lintang Sutawika committed
411

412
413
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Baber's avatar
Baber committed
414
                se = "   N/A" if se == "N/A" else f"{se:.4f}"
Lintang Sutawika's avatar
Lintang Sutawika committed
415
                values.append([k, version, f, n, m, hib, v, "±", se])
416
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
417
                values.append([k, version, f, n, m, hib, v, "", ""])
418
419
420
421
422
423
424
425
426
427
428
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


429
430
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
431
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
432
433
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
434

Baber's avatar
Baber committed
435
436
    wraps(fn)

437
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
438
439
440
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
441
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
442
443
                "lm-evaluation-harness!"
            )
444
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
445

446
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
447

Fabrizio Milo's avatar
Fabrizio Milo committed
448

449
450
451
452
def ignore_constructor(loader, node):
    return node


453
def import_function(loader: yaml.Loader, node, yaml_path: Path):
lintangsutawika's avatar
lintangsutawika committed
454
455
    function_name = loader.construct_scalar(node)

lintangsutawika's avatar
lintangsutawika committed
456
    *module_name, function_name = function_name.split(".")
457
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
458
        module_name = ".".join(module_name)
459
    module_path = yaml_path.parent / f"{module_name}.py"
lintangsutawika's avatar
lintangsutawika committed
460

461
462
463
464
    spec = importlib.util.spec_from_file_location(module_name, module_path.as_posix())

    if spec is None:
        raise ImportError(f"Could not import module {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
465
    module = importlib.util.module_from_spec(spec)
466
467
468

    if spec.loader is None:
        raise ImportError(f"Module loader is None, {module_name} from {module_path}.")
lintangsutawika's avatar
lintangsutawika committed
469
470
471
472
473
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
474

475
476
477
478
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
479
480
481
        if yaml_path is None:
            raise ValueError("yaml_path must be provided if mode is 'full'.")
        # Attach yaml_path to the import function so that it can be used later
Baber's avatar
Baber committed
482
        constructor_fn = partial(import_function, yaml_path=Path(yaml_path))
lintangsutawika's avatar
lintangsutawika committed
483

484
    loader = yaml.CLoader if yaml.__with_libyaml__ else yaml.FullLoader
485
    # Add the import_function constructor to the YAML loader
486
    yaml.add_constructor("!function", constructor_fn, Loader=loader)
487
488
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
489
            yaml_config = yaml.load(file, Loader=loader)
lintangsutawika's avatar
lintangsutawika committed
490

lintangsutawika's avatar
lintangsutawika committed
491
492
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
493
494
495
496
497
498
499

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

500
        if isinstance(include_path, str):
501
502
503
504
505
506
507
508
509
510
511
512
513
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
514
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
515
516
517
518
519
520
521
522
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
523
524


Ethan Smith's avatar
Ethan Smith committed
525
def regex_replace(string, pattern, repl, count: int = 0):
526
527
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
528

lintangsutawika's avatar
lintangsutawika committed
529

530
env = Environment(
Baber's avatar
Baber committed
531
    loader=BaseLoader(), undefined=StrictUndefined, keep_trailing_newline=True
532
)
533
env.filters["regex_replace"] = regex_replace
534
535


Baber's avatar
Baber committed
536
537
538
539
540
@lru_cache(maxsize=128)
def _compile(raw: str):
    return env.from_string(raw)


baberabb's avatar
baberabb committed
541
def apply_template(template: str, doc: dict) -> str:
Baber's avatar
Baber committed
542
    rtemplate = _compile(template)
543
    return rtemplate.render(**doc)
544
545


546
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
547
548
549
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
550
551
552
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
553
554
555
556
557
558
559
560
561
562


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591


def convert_pil_to_hash(value):
    from io import BytesIO

    img_bytes = BytesIO()
    value.save(img_bytes, format="PNG")
    return hashlib.sha256(str(img_bytes).encode()).hexdigest()


def convert_bytes_to_hash(value):
    return hashlib.sha256(str(value).encode()).hexdigest()


def hash_dict_images(data_dict):
    """
    Create a deep copy of `data_dict` where all bytes and PIL.Image.Image values
    are replaced by their respective hashes using the provided converter functions.

    Parameters:
        data_dict (dict): The input dictionary with arbitrary nesting of dicts and lists.

    Returns:
        dict: A new dictionary with the same structure as `data_dict`, but with all
              bytes and PIL.Image.Image objects replaced by their hashes.
    """

    def _process_value(value):
        # Bytes -> hash
Baber Abbasi's avatar
Baber Abbasi committed
592
593
        from PIL import Image

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        if isinstance(value, (bytes, bytearray)):
            return convert_bytes_to_hash(value)
        # PIL Image -> hash
        if isinstance(value, Image.Image):
            return convert_pil_to_hash(value)
        # Nested dictionary -> recurse
        if isinstance(value, dict):
            return {k: _process_value(v) for k, v in value.items()}
        # List or tuple -> recurse, preserving type
        if isinstance(value, list):
            return [_process_value(v) for v in value]
        if isinstance(value, tuple):
            return tuple(_process_value(v) for v in value)
        # Other types remain unchanged
        return value

    # Ensure the top-level is a dict
    if not isinstance(data_dict, dict):
        raise TypeError("Input must be a dictionary")

Baber Abbasi's avatar
Baber Abbasi committed
614
615
616
617
618
    return (
        {key: _process_value(val) for key, val in data_dict.items()}
        if importlib.util.find_spec("PIL")
        else data_dict
    )