utils.py 15.2 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from typing import Any, Callable, Generator, List, Tuple
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
16
import yaml
17
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
18

lintangsutawika's avatar
lintangsutawika committed
19

20
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
21

22
23
24
25
26
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
27

Lintang Sutawika's avatar
Lintang Sutawika committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def setup_logging(verbosity=logging.INFO):
    # Configure the root logger
    log_level = os.environ.get("LOGLEVEL", verbosity) or verbosity

    level_map = {
        "DEBUG": logging.DEBUG,
        "INFO": logging.INFO,
        "WARNING": logging.WARNING,
        "ERROR": logging.ERROR,
        "CRITICAL": logging.CRITICAL,
    }

    log_level = level_map.get(str(log_level).upper(), logging.INFO)
    if not logging.root.handlers:
        logging.basicConfig(
            format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(name)s:%(lineno)d] %(message)s",
            datefmt="%Y-%m-%d:%H:%M:%S",
            level=log_level,
        )
        if log_level == logging.DEBUG:
            third_party_loggers = ["urllib3", "filelock", "fsspec"]
            for logger_name in third_party_loggers:
                logging.getLogger(logger_name).setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(log_level)


55
56
57
58
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


59
60
61
62
63
64
65
66
67
68
69
70
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
Baber Abbasi's avatar
Baber Abbasi committed
71
72
73
    assert len(sep_char) == 1, (
        "separation string must be a single character for escaped splitting"
    )
74
75
76
77
78
79
80
81

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
82
83
84
85
86
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
87
88
89
90
91
92
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
93
94


95
96
97
98
99
100
101
102
103
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


104
105
106
107
108
109
110
111
112
113
114
115
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Jason Phang's avatar
gpt3  
Jason Phang committed
116
117
118
119
120
121
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
122
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
123
124
    if not args_string:
        return {}
125
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
126
    args_dict = {
127
128
        kv[0]: handle_arg_string("=".join(kv[1:]))
        for kv in [arg.split("=") for arg in arg_list]
haileyschoelkopf's avatar
haileyschoelkopf committed
129
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
130
    return args_dict
Leo Gao's avatar
Leo Gao committed
131

Fabrizio Milo's avatar
Fabrizio Milo committed
132

Leo Gao's avatar
Leo Gao committed
133
134
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
135
        yield from iter
Leo Gao's avatar
Leo Gao committed
136
137


138
139
140
141
142
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
143

144
145
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
146

gakada's avatar
gakada committed
147
148
149
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
150
    if isinstance(patterns, str):
151
152
        patterns = [patterns]

gakada's avatar
gakada committed
153
154
155
156
157
158
159
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Lintang Sutawika's avatar
Lintang Sutawika committed
160
161
162
163
164
165
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
166
167
168
169
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
170
171
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
172
    string = re.sub(r" (['.,])", r"\1", string)
173
174
175
    return string


176
177
178
179
180
181
182
183
184
185
186
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
187
    return filename[filename.rfind("_") + 1 :].replace(".jsonl", "")
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


225
226
227
def get_rolling_token_windows(
    token_list: List[int], prefix_token: int, max_seq_len: int, context_len: int
) -> Generator[Tuple[List[int], List[int]], None, None]:
Jason Phang's avatar
Jason Phang committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
254
    yield [prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]
Jason Phang's avatar
Jason Phang committed
255
256
257
258
259
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
260

Jason Phang's avatar
Jason Phang committed
261
        yield (
lintangsutawika's avatar
lintangsutawika committed
262
263
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
264
265
266
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
267

268
269
270
def make_disjoint_window(
    pair: Tuple[List[int], List[int]],
) -> Tuple[List[int], List[int]]:
Fabrizio Milo's avatar
Fabrizio Milo committed
271
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
272
    a, b = pair
273
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
274

Jason Phang's avatar
Jason Phang committed
275

276
277
278
279
280
281
282
283
284
285
286
287
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


288
class Reorderer:
baberabb's avatar
baberabb committed
289
290
291
292
293
294
295
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
296
297
298
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
299
300
301
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
302
303
304
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
305

306
    def get_reordered(self):
baberabb's avatar
baberabb committed
307
308
309
310
311
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
312
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
313

314
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
315
316
317
318
319
320
321
322
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
323
324
325
326
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
327
            for ind in inds:
328
329
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
330

331
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
332

333
334
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
335

Lintang Sutawika's avatar
Lintang Sutawika committed
336
def make_table(result_dict, column: str = "results", sort_results: bool = False):
337
    """Generate table of results."""
338
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
339

lintangsutawika's avatar
lintangsutawika committed
340
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
341
342
343
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
344

lintangsutawika's avatar
lintangsutawika committed
345
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
346
        column_name,
lintangsutawika's avatar
lintangsutawika committed
347
348
        "Version",
        "Filter",
349
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
350
        "Metric",
351
        "",
lintangsutawika's avatar
lintangsutawika committed
352
353
354
355
        "Value",
        "",
        "Stderr",
    ]
356

lintangsutawika's avatar
lintangsutawika committed
357
358
359
360
361
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

362
363
    values = []

364
365
    keys = result_dict[column].keys()
    if sort_results:
Lintang Sutawika's avatar
Lintang Sutawika committed
366
367
368
        # sort entries alphabetically by task or group name.
        # NOTE: we default here to false, because order matters for multi-level table printing a la mmlu.
        # sorting here would mess that up
369
370
371
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
Lintang Sutawika's avatar
Lintang Sutawika committed
372
373
        version = result_dict["versions"].get(k, "    N/A")
        n = str(result_dict.get("n-shot", " ").get(k, " "))
374
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
375
376
377
378

        if "alias" in dic:
            k = dic.pop("alias")

379
        metric_items = dic.items()
Lintang Sutawika's avatar
Lintang Sutawika committed
380
        metric_items = sorted(metric_items)
381
382

        for (mf), v in metric_items:
383
            m, _, f = mf.partition(",")
384
385
386
            if m.endswith("_stderr"):
                continue

387
388
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

Lintang Sutawika's avatar
Lintang Sutawika committed
389
390
            v = "%.4f" % v if isinstance(v, float) else v

391
392
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
Lintang Sutawika's avatar
Lintang Sutawika committed
393
                se = "   N/A" if se == "N/A" else "%.4f" % se
Lintang Sutawika's avatar
Lintang Sutawika committed
394
                values.append([k, version, f, n, m, hib, v, "±", se])
395
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
396
                values.append([k, version, f, n, m, hib, v, "", ""])
397
398
399
400
401
402
403
404
405
406
407
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


408
409
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
410
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
411
412
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
413

414
415
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
416
417
418
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
419
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
420
421
                "lm-evaluation-harness!"
            )
422
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
423

424
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
425

Fabrizio Milo's avatar
Fabrizio Milo committed
426

427
428
429
430
def ignore_constructor(loader, node):
    return node


lintangsutawika's avatar
lintangsutawika committed
431
432
433
434
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
435
    *module_name, function_name = function_name.split(".")
436
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
437
438
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
439
440
441
442
443
444
445
446

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
447

448
449
450
451
452
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
        constructor_fn = import_function
lintangsutawika's avatar
lintangsutawika committed
453

454
455
    # Add the import_function constructor to the YAML loader
    yaml.add_constructor("!function", constructor_fn)
456
457
458
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
459

lintangsutawika's avatar
lintangsutawika committed
460
461
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
462
463
464
465
466
467
468

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

469
        if isinstance(include_path, str):
470
471
472
473
474
475
476
477
478
479
480
481
482
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
483
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
484
485
486
487
488
489
490
491
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
492
493


Ethan Smith's avatar
Ethan Smith committed
494
def regex_replace(string, pattern, repl, count: int = 0):
495
496
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
497

lintangsutawika's avatar
lintangsutawika committed
498

499
500
501
env = Environment(
    loader=BaseLoader, undefined=StrictUndefined, keep_trailing_newline=True
)
502
env.filters["regex_replace"] = regex_replace
503
504


baberabb's avatar
baberabb committed
505
def apply_template(template: str, doc: dict) -> str:
506
507
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
508
509


510
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
511
512
513
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
514
515
516
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
517
518
519
520
521
522
523
524
525
526


def weighted_f1_score(items):
    from sklearn.metrics import f1_score

    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore