evaluator.py 31.5 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

Baber Abbasi's avatar
Baber Abbasi committed
3
import itertools
4
import json
5
import logging
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
import random
8
import time
9
from collections import defaultdict
Baber's avatar
Baber committed
10
from typing import TYPE_CHECKING, Any
Baber Abbasi's avatar
Baber Abbasi committed
11

12
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
13
import torch
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
17
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
18
import lm_eval.models
19
from lm_eval.caching.cache import delete_cache
20
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    consolidate_group_results,
22
23
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
24
    get_subtask_list,
25
26
27
28
29
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
30
from lm_eval.loggers import EvaluationTracker
31
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
32
from lm_eval.tasks import TaskManager, get_task_dict
33
34
from lm_eval.utils import (
    handle_non_serializable,
35
    hash_dict_images,
36
37
    hash_string,
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
38
    setup_logging,
39
    simple_parse_args_string,
40
    wrap_text,
41
)
42

Fabrizio Milo's avatar
Fabrizio Milo committed
43

44
45
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
46
    from lm_eval.api.task import Task
47

Lintang Sutawika's avatar
Lintang Sutawika committed
48
49
eval_logger = logging.getLogger(__name__)

50

51
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
52
53
def simple_evaluate(
    model,
Baber's avatar
Baber committed
54
55
56
57
58
59
60
    model_args: str | dict[str, Any] | None = None,
    tasks: list[str | dict | object] | None = None,
    num_fewshot: int | None = None,
    batch_size: int | str | None = None,
    max_batch_size: int | None = None,
    device: str | None = None,
    use_cache: str | None = None,
61
62
63
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber's avatar
Baber committed
64
65
    limit: int | float | None = None,
    samples: dict | None = None,
Ethan Smith's avatar
Ethan Smith committed
66
67
68
69
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
Baber's avatar
Baber committed
70
71
72
    evaluation_tracker: EvaluationTracker | None = None,
    system_instruction: str | None = None,
    apply_chat_template: bool | str = False,
KonradSzafer's avatar
KonradSzafer committed
73
    fewshot_as_multiturn: bool = False,
Baber's avatar
Baber committed
74
75
    gen_kwargs: str | dict | None = None,
    task_manager: TaskManager | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
76
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
77
    predict_only: bool = False,
78
79
80
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
81
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
82
    confirm_run_unsafe_code: bool = False,
Baber's avatar
Baber committed
83
    metadata: dict | None = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
84
):
85
    """Instantiate and evaluate a model on a list of tasks.
86

87
88
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
89
90
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
91
        Ignored if `model` argument is a LM object.
92
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
93
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
94
95
    :param num_fewshot: int
        Number of examples in few-shot context
96
    :param batch_size: int or str, optional
97
        Batch size for model
98
99
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
100
    :param device: str, optional
101
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
102
103
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
104
105
106
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
107
        Rewrites all the request cache if set to `True`. `None` if not desired.
108
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
109
        Deletes all the request cache if set to `True`. `None` if not desired.
110
111
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
112
113
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
114
    :param bootstrap_iters:
115
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
116
117
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
118
    :param write_out: bool
119
120
121
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
122
123
    :param system_instruction: str
        System instruction to be applied to the prompt
124
125
126
127
128
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
129
130
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
131
132
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
133
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
134
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
135
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
136
137
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
138
139
140
141
142
143
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
144
145
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
146
147
148
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
    return
149
        Dictionary of results
150
    """
Baber Abbasi's avatar
Baber Abbasi committed
151
152
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
153
    start_date = time.time()
154

155
156
157
158
159
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

160
    _NEEDS_CHAT_TEMPLATE = ("inst", "chat")
161
    if (
162
163
164
165
        (
            isinstance(model_args, str)
            and any(kw in model_args.lower() for kw in _NEEDS_CHAT_TEMPLATE)
        )
166
167
        or (
            isinstance(model_args, dict)
168
169
170
171
            and any(
                any(kw in str(v).lower() for kw in _NEEDS_CHAT_TEMPLATE)
                for v in model_args.values()
            )
172
173
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
174
        eval_logger.warning(
175
176
177
178
179
            wrap_text(
                f"""pretrained={model_args.get("pretrained") if isinstance(model_args, dict) else model_args} appears to be an
                instruct or chat variant but chat template is not applied.
                Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`).""",
            )
Baber Abbasi's avatar
Baber Abbasi committed
180
181
        )

182
183
184
185
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

186
    seed_message = []
187
188
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
189
        seed_message.append(f"Setting random seed to {random_seed}")
190
191
192
        random.seed(random_seed)

    if numpy_random_seed is not None:
193
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
194
195
196
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
197
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
198
199
        torch.manual_seed(torch_random_seed)

200
201
202
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

203
204
205
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

206
207
    if tasks is None:
        tasks = []
208
209
210
211
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
212

lintangsutawika's avatar
lintangsutawika committed
213
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
214
215
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
216
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
217
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
218
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
219
        )
Baber Abbasi's avatar
Baber Abbasi committed
220
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
221
222
            gen_kwargs = None

223
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
224
        if model_args is None:
225
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
226
            model_args = ""
227

228
        if isinstance(model_args, dict):
229
230
231
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
232
233
234
235
236
237
238
239
240
241
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
242
            eval_logger.info(
243
244
245
                wrap_text(
                    f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
                )
246
            )
247
248
249
250
251
252
253
254
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
255
    else:
256
        if not isinstance(model, lm_eval.api.model.LM):
257
258
259
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
260
        eval_logger.info("Using pre-initialized model")
261
        lm = model
262

haileyschoelkopf's avatar
haileyschoelkopf committed
263
    if use_cache is not None:
264
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
265
266
267
268
269
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
270
271
272
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
273
274
        )

275
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
276
277
278
279
280
281
282
283
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
284

Baber Abbasi's avatar
Baber Abbasi committed
285
286
287
288
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
289

Lintang Sutawika's avatar
Lintang Sutawika committed
290
291
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
Baber's avatar
Baber committed
292
    def _adjust_config(task_dict: dict[str, Task]) -> dict[str, Task]:
Lintang Sutawika's avatar
Lintang Sutawika committed
293
294
295
296
297
298
299
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
300

301
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
302
303
304
305
306
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
307
308
309
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
344

Stephen Hogg's avatar
Stephen Hogg committed
345
    if check_integrity:
346
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
347

KonradSzafer's avatar
KonradSzafer committed
348
349
350
351
352
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
353
354
355
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
356
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
357
358
        )

359
360
361
362
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
363
        samples=samples,
364
365
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
366
        bootstrap_iters=bootstrap_iters,
367
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
368
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
369
370
371
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
372
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
373
        confirm_run_unsafe_code=confirm_run_unsafe_code,
374
    )
Baber Abbasi's avatar
Baber Abbasi committed
375
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
376
        setup_logging(verbosity=verbosity)
377

378
    if lm.rank == 0:
379
380
381
382
383
384
385
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

386
387
        # add info about the model and few shot config
        results["config"] = {
388
            "model": model_name,
389
390
            "model_args": model_args,
        }
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
406
407
408
409
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
410
411
            }
        )
412
        results["git_hash"] = get_git_commit_hash()
413
        results["date"] = start_date
414
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
415
        add_tokenizer_info(results, lm)  # additional info about tokenizer
416
417
418
        return results
    else:
        return None
419

Leo Gao's avatar
Leo Gao committed
420

421
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
422
def evaluate(
Baber's avatar
Baber committed
423
    lm: LM,
Fabrizio Milo's avatar
Fabrizio Milo committed
424
    task_dict,
Baber's avatar
Baber committed
425
    limit: int | float | None = None,
Baber's avatar
Baber committed
426
    samples: dict | None = None,
427
428
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber's avatar
Baber committed
429
    bootstrap_iters: int | None = 100000,
Ethan Smith's avatar
Ethan Smith committed
430
431
    write_out: bool = False,
    log_samples: bool = True,
Baber's avatar
Baber committed
432
433
    system_instruction: str | None = None,
    apply_chat_template: bool | str = False,
KonradSzafer's avatar
KonradSzafer committed
434
    fewshot_as_multiturn: bool = False,
435
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
436
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
437
):
438
439
440
441
442
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
443
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
444
445
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
446
447
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
448
449
450
451
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
452
    :param bootstrap_iters:
453
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
454
    :param write_out: bool
455
456
457
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
458
459
    :param system_instruction: str
        System instruction to be applied to the prompt
460
461
462
463
464
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
465
466
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
467
468
469
470
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
471
472
473
    :return
        Dictionary of results
    """
474

475
476
477
478
479
480
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
481
482
483
484
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
485
    # tracks all Instances/requests a model must generate output on.
486
    requests = defaultdict(list)
487
488
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
489
    padding_requests = defaultdict(int)
490

491
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
492
    eval_tasks = get_task_list(task_dict)
Baber's avatar
Baber committed
493
494
495
496
497
    if not log_samples and not all(
        "bypass" not in getattr(task_output.task, "_metric_fn_list", {})
        for task_output in eval_tasks
    ):
        raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
498

Hojin Lee's avatar
Hojin Lee committed
499
500
501
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
502
    incompatible_tasks = []
503
504
    for task_output in eval_tasks:
        task: Task = task_output.task
505

506
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
507
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
508
509
510
511
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
Baber's avatar
Baber committed
512
513
514
515
    if len(incompatible_tasks) > 0 and not getattr(lm, "MULTIMODAL", False):
        raise ValueError(
            f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
        )
Hojin Lee's avatar
Hojin Lee committed
516
    # end validation check
517

Chenjie Luo's avatar
Chenjie Luo committed
518
519
520
    # Cache the limit arg.
    limit_arg = limit
    limits = []
521
522
523
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
524
525
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
526
527
        task.build_all_requests(
            limit=limit,
528
529
530
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
531
532
533
534
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
535
            system_instruction=system_instruction,
536
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
537
            fewshot_as_multiturn=fewshot_as_multiturn,
Baber's avatar
Baber committed
538
            chat_template=getattr(lm, "apply_chat_template", None),
539
540
541
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
542
        )
543
        eval_logger.debug(
544
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
545
546
        )
        if write_out:
547
            print_writeout(task)
548
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
549
550
551
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
552
553

        if lm.world_size > 1:
554
555
556
557
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
558
559
560
561
562
563
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
564
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
565
            numpad = max(gathered_item) - gathered_item[lm.rank]
566
567
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
568

569
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
570
571
    # execute each type of request
    for reqtype, reqs in requests.items():
572
        eval_logger.info(f"Running {reqtype} requests")
573
574
575
576
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
577

578
579
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
580
581
                cloned_reqs.extend([req] * req.repeats)

582
583
584
585
586
587
588
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

589
590
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
591

592
593
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
594
595
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
596
    for task_output, limit in zip(eval_tasks, limits):
597
        task = task_output.task
598
599
        task.apply_filters()

600
601
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
602
        # TODO: make it possible to use a different metric per filter
603
        # Pre-process task.instances to group by doc_id
604
        instances_by_doc_id = defaultdict(list)
605
606
607
608
609
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
610
        # iterate over different filters used
Baber's avatar
Baber committed
611
        for filter_key in task.instances[0].filtered_resps:
612
613
614
615
616
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
617
            doc_iterator = task.doc_iterator(
618
619
620
621
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
622
            )
623
            for doc_id, doc in doc_iterator:
Baber's avatar
Baber committed
624
                doc_id_true = indices[doc_id] if indices else doc_id
625
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
626
                metrics = task.process_results(
627
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
628
                )
629
630
631
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
632
                        "doc_id": doc_id_true,
633
634
635
636
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
637
638
639
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
640
641
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
642
643
644
645
646
647
648
649
650
651
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
652
653
                    }
                    example.update(metrics)
654
                    task_output.logged_samples.append(example)
655
                for metric, value in metrics.items():
656
                    task_output.sample_metrics[(metric, filter_key)].append(value)
657

658
659
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
660
        # first gather logged samples across all ranks
661
662
663
664
665
666
667
668
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
669
                )
670

671
672
673
674
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
675

676
677
678
679
680
681
682
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
683
                )
684
685
686
687
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
688

689
    if RANK == 0:
690
691
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
692
693
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
694
695
696
697
698
699
700
701
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
702

703
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
704
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
720
721
                for task in task_list:
                    for m, h in higher_is_better[task].items():
Baber's avatar
Baber committed
722
                        if m not in _higher_is_better:
723
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
724

Lintang Sutawika's avatar
Lintang Sutawika committed
725
726
727
728
729
730
731
732
733
734
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
735

736
        results_dict = {
737
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
738
739
740
741
742
743
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
744
745
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
746
            "n-shot": dict(sorted(num_fewshot.items())),
747
            "higher_is_better": dict(sorted(higher_is_better.items())),
748
749
750
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
751
752
753
754
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
755
                }
Chenjie Luo's avatar
Chenjie Luo committed
756
                for task_output, limit in zip(eval_tasks, limits)
757
            },
758
        }
759
        if log_samples:
760
761
762
763
            # default: hash images
            samples = (
                hash_dict_images(samples)
                if os.environ.get("LMEVAL_HASHMM", "1") != "0"
Baber Abbasi's avatar
Baber Abbasi committed
764
                and (hasattr(lm, "MULTIMODAL"))
765
766
                else samples
            )
767
768
769
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
770

771
772
    else:
        return None
773
774
775
776


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
777
778
779
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
780
781
782
    }

    return request_caching_args