evaluator.py 31.6 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

Baber Abbasi's avatar
Baber Abbasi committed
3
import itertools
4
import json
5
import logging
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
import random
8
import time
9
from collections import defaultdict
Baber's avatar
Baber committed
10
from typing import TYPE_CHECKING, Any, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
11

12
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
13
import torch
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
17
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
18
import lm_eval.models
19
from lm_eval.caching.cache import delete_cache
20
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    consolidate_group_results,
22
23
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
24
    get_subtask_list,
25
26
27
28
29
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
30
from lm_eval.loggers import EvaluationTracker
31
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
32
from lm_eval.tasks import TaskManager, get_task_dict
33
34
from lm_eval.utils import (
    handle_non_serializable,
35
    hash_dict_images,
36
37
    hash_string,
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
38
    setup_logging,
39
40
    simple_parse_args_string,
)
41

Fabrizio Milo's avatar
Fabrizio Milo committed
42

43
44
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
45
    from lm_eval.api.task import Task
46

Lintang Sutawika's avatar
Lintang Sutawika committed
47
48
eval_logger = logging.getLogger(__name__)

49

50
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
51
52
def simple_evaluate(
    model,
Baber's avatar
Baber committed
53
    model_args: Optional[Union[str, dict[str, Any]]] = None,
54
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
55
    num_fewshot: Optional[int] = None,
56
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
57
58
59
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
60
61
62
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
63
    limit: Optional[Union[int, float]] = None,
64
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
65
66
67
68
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
69
70
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
71
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
72
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
73
    gen_kwargs: Union[str, dict, None] = None,
74
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
75
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
76
    predict_only: bool = False,
77
78
79
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
80
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
81
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
82
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
83
):
84
    """Instantiate and evaluate a model on a list of tasks.
85

86
87
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
88
89
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
90
        Ignored if `model` argument is a LM object.
91
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
92
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
93
94
    :param num_fewshot: int
        Number of examples in few-shot context
95
    :param batch_size: int or str, optional
96
        Batch size for model
97
98
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
99
    :param device: str, optional
100
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
101
102
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
103
104
105
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
106
        Rewrites all the request cache if set to `True`. `None` if not desired.
107
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
108
        Deletes all the request cache if set to `True`. `None` if not desired.
109
110
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
111
112
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
113
    :param bootstrap_iters:
114
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
115
116
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
117
    :param write_out: bool
118
119
120
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
121
122
    :param system_instruction: str
        System instruction to be applied to the prompt
123
124
125
126
127
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
128
129
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
130
131
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
132
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
133
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
134
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
135
136
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
137
138
139
140
141
142
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
143
144
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
145
146
147
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
    return
148
        Dictionary of results
149
    """
Baber Abbasi's avatar
Baber Abbasi committed
150
151
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
152
    start_date = time.time()
153

154
155
156
157
158
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

159
    _NEEDS_CHAT_TEMPLATE = ("inst", "chat")
160
    if (
161
162
163
164
        (
            isinstance(model_args, str)
            and any(kw in model_args.lower() for kw in _NEEDS_CHAT_TEMPLATE)
        )
165
166
        or (
            isinstance(model_args, dict)
167
168
169
170
            and any(
                any(kw in str(v).lower() for kw in _NEEDS_CHAT_TEMPLATE)
                for v in model_args.values()
            )
171
172
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
173
        eval_logger.warning(
174
175
            "Model appears to be an instruct or chat variant but chat template is not applied. "
            "Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
Baber Abbasi's avatar
Baber Abbasi committed
176
177
        )

178
179
180
181
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

182
    seed_message = []
183
184
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
185
        seed_message.append(f"Setting random seed to {random_seed}")
186
187
188
        random.seed(random_seed)

    if numpy_random_seed is not None:
189
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
190
191
192
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
193
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
194
195
        torch.manual_seed(torch_random_seed)

196
197
198
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

199
200
201
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

202
203
    if tasks is None:
        tasks = []
204
205
206
207
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
208

lintangsutawika's avatar
lintangsutawika committed
209
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
210
211
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
212
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
213
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
214
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
215
        )
Baber Abbasi's avatar
Baber Abbasi committed
216
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
217
218
            gen_kwargs = None

219
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
220
        if model_args is None:
221
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
222
            model_args = ""
223

224
        if isinstance(model_args, dict):
225
226
227
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
228
229
230
231
232
233
234
235
236
237
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
238
239
240
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
241
242
243
244
245
246
247
248
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
249
    else:
250
        if not isinstance(model, lm_eval.api.model.LM):
251
252
253
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
254
        eval_logger.info("Using pre-initialized model")
255
        lm = model
256

haileyschoelkopf's avatar
haileyschoelkopf committed
257
    if use_cache is not None:
258
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
259
260
261
262
263
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
264
265
266
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
267
268
        )

269
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
270
271
272
273
274
275
276
277
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
278

Baber Abbasi's avatar
Baber Abbasi committed
279
280
281
282
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
283

Lintang Sutawika's avatar
Lintang Sutawika committed
284
285
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
Baber's avatar
Baber committed
286
    def _adjust_config(task_dict: dict[str, "Task"]) -> dict[str, "Task"]:
Lintang Sutawika's avatar
Lintang Sutawika committed
287
288
289
290
291
292
293
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
294

295
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
296
297
298
299
300
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
301
302
303
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
338

Stephen Hogg's avatar
Stephen Hogg committed
339
    if check_integrity:
340
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
341

KonradSzafer's avatar
KonradSzafer committed
342
343
344
345
346
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
347
348
349
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
350
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
351
352
        )

353
354
355
356
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
357
        samples=samples,
358
359
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
360
        bootstrap_iters=bootstrap_iters,
361
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
362
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
363
364
365
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
366
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
367
        confirm_run_unsafe_code=confirm_run_unsafe_code,
368
    )
Baber Abbasi's avatar
Baber Abbasi committed
369
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
370
        setup_logging(verbosity=verbosity)
371

372
    if lm.rank == 0:
373
374
375
376
377
378
379
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

380
381
        # add info about the model and few shot config
        results["config"] = {
382
            "model": model_name,
383
384
            "model_args": model_args,
        }
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
400
401
402
403
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
404
405
            }
        )
406
        results["git_hash"] = get_git_commit_hash()
407
        results["date"] = start_date
408
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
409
        add_tokenizer_info(results, lm)  # additional info about tokenizer
410
411
412
        return results
    else:
        return None
413

Leo Gao's avatar
Leo Gao committed
414

415
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
416
def evaluate(
417
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
418
    task_dict,
Baber's avatar
Baber committed
419
    limit: int | float | None = None,
420
    samples: Optional[dict] = None,
421
422
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
423
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
424
425
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
426
    system_instruction: Optional[str] = None,
427
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
428
    fewshot_as_multiturn: bool = False,
429
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
430
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
431
):
432
433
434
435
436
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
437
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
438
439
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
440
441
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
442
443
444
445
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
446
    :param bootstrap_iters:
447
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
448
    :param write_out: bool
449
450
451
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
452
453
    :param system_instruction: str
        System instruction to be applied to the prompt
454
455
456
457
458
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
459
460
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
461
462
463
464
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
465
466
467
    :return
        Dictionary of results
    """
468

469
470
471
472
473
474
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
475
476
477
478
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
479
    # tracks all Instances/requests a model must generate output on.
480
    requests = defaultdict(list)
481
482
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
483
    padding_requests = defaultdict(int)
484

485
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
486
    eval_tasks = get_task_list(task_dict)
487
    if not log_samples:
488
        if not all(
489
490
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
491
492
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
493

Hojin Lee's avatar
Hojin Lee committed
494
495
496
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
497
    incompatible_tasks = []
498
499
    for task_output in eval_tasks:
        task: Task = task_output.task
500

501
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
502
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
503
504
505
506
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
507
508
509
510
511
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
512
    # end validation check
513

Chenjie Luo's avatar
Chenjie Luo committed
514
515
516
    # Cache the limit arg.
    limit_arg = limit
    limits = []
517
518
519
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
520
521
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
522
523
        task.build_all_requests(
            limit=limit,
524
525
526
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
527
528
529
530
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
531
            system_instruction=system_instruction,
532
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
533
            fewshot_as_multiturn=fewshot_as_multiturn,
534
535
536
537
538
539
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
540
        )
541
        eval_logger.debug(
542
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
543
544
        )
        if write_out:
545
            print_writeout(task)
546
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
547
548
549
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
550
551

        if lm.world_size > 1:
552
553
554
555
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
556
557
558
559
560
561
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
562
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
563
            numpad = max(gathered_item) - gathered_item[lm.rank]
564
565
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
566

567
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
568
569
    # execute each type of request
    for reqtype, reqs in requests.items():
570
        eval_logger.info(f"Running {reqtype} requests")
571
572
573
574
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
575

576
577
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
578
579
                cloned_reqs.extend([req] * req.repeats)

580
581
582
583
584
585
586
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

587
588
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
589

590
591
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
592
593
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
594
    for task_output, limit in zip(eval_tasks, limits):
595
        task = task_output.task
596
597
        task.apply_filters()

598
599
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
600
        # TODO: make it possible to use a different metric per filter
601
        # Pre-process task.instances to group by doc_id
602
        instances_by_doc_id = defaultdict(list)
603
604
605
606
607
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
608
        # iterate over different filters used
609
        for filter_key in task.instances[0].filtered_resps.keys():
610
611
612
613
614
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
615
            doc_iterator = task.doc_iterator(
616
617
618
619
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
620
            )
621
            for doc_id, doc in doc_iterator:
622
623
624
625
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
626
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
627
                metrics = task.process_results(
628
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
629
                )
630
631
632
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
633
                        "doc_id": doc_id_true,
634
635
636
637
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
638
639
640
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
641
642
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
643
644
645
646
647
648
649
650
651
652
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
653
654
                    }
                    example.update(metrics)
655
                    task_output.logged_samples.append(example)
656
                for metric, value in metrics.items():
657
                    task_output.sample_metrics[(metric, filter_key)].append(value)
658

659
660
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
661
        # first gather logged samples across all ranks
662
663
664
665
666
667
668
669
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
670
                )
671

672
673
674
675
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
676

677
678
679
680
681
682
683
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
684
                )
685
686
687
688
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
689

690
    if RANK == 0:
691
692
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
693
694
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
695
696
697
698
699
700
701
702
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
703

704
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
705
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
721
722
723
724
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
725

Lintang Sutawika's avatar
Lintang Sutawika committed
726
727
728
729
730
731
732
733
734
735
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
736

737
        results_dict = {
738
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
739
740
741
742
743
744
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
745
746
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
747
            "n-shot": dict(sorted(num_fewshot.items())),
748
            "higher_is_better": dict(sorted(higher_is_better.items())),
749
750
751
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
752
753
754
755
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
756
                }
Chenjie Luo's avatar
Chenjie Luo committed
757
                for task_output, limit in zip(eval_tasks, limits)
758
            },
759
        }
760
        if log_samples:
761
762
763
764
            # default: hash images
            samples = (
                hash_dict_images(samples)
                if os.environ.get("LMEVAL_HASHMM", "1") != "0"
Baber Abbasi's avatar
Baber Abbasi committed
765
                and (hasattr(lm, "MULTIMODAL"))
766
767
                else samples
            )
768
769
770
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
771

772
773
    else:
        return None
774
775
776
777


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
778
779
780
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
781
782
783
    }

    return request_caching_args